码迷,mamicode.com
首页 > 其他好文 > 详细

求多个区间合并后区间大小的巧妙解决方法【差分】

时间:2018-08-31 13:21:05      阅读:1092      评论:0      收藏:0      [点我收藏+]

标签:string   ble   cto   依次   效率   algo   解决方法   name   class   

技术分享图片

  上图一共有5个区间,分别是[0,2]、[2,4]、[8,11]、[7,11]、[15,18]。如果要求这些区间合并后区间的大小,有两种简单的方法。

  方法一:比较每两个区间的范围,如果两个区间有交集,则合并它们。最后所有区间会合并成几个离散的大区间,结果为这些区间大小之和。这种方法的时间复杂度是O(n^2)。

  方法二:使用一个可以覆盖所有区间范围的数组,对每个区间进行标记,结果为数组中被标记元素的个数。这种方法的时间复杂度是O(nm)。

  注:n是区间个数,m是所有区间总的范围。

 

  如果n和m都比较大,那么上述两种方法的效率都不高。这里有一种很巧妙的解决这个问题的方法,它的时间复杂度是O(n+m)。使用一个可以覆盖所有区间范围的数组flg,初始化时将数组中的元素都置为0。对于每一个区间[l,r],将flg[l]++,flg[r+1]--。最后使用一个累加器cnt,初始置为0。依次扫描数组中的每一个元素,对于第i个元素,cnt+=flg[i]。此时,若cnt>0,则说明i在某些区间中;若cnt==0,则证明i不在任何区间中。统计cnt>0的元素个数即可。

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <string>
#include <cstring>
#include <vector>
#include <stack>
#include <queue>
#include <cmath>
#include <list>
#include <deque>
#include <map>
#include <set>
using namespace std;
#define ll long long
const double PI = acos(-1.0);
const int maxn = 101;
const int INF = 0x3f3f3f3f;
int dx[]={0,0,-1,1};
int dy[]={-1,1,0,0};

int n,m;
int f[maxn],cnt=0,sum=0;
struct node
{
    int l,r;
}a[maxn];
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=0;i<n;i++)
    {
        scanf("%d %d",&a[i].l,&a[i].r);
    }
    for(int i=0;i<n;i++)
    {
        f[a[i].l]++;
        f[a[i].r+1]--;
    }
    for(int i=0;i<m;i++)
    {
        sum+=f[i];
        if(sum>0)
            cnt++;
    }
    printf("%d\n",cnt);
}

 

求多个区间合并后区间大小的巧妙解决方法【差分】

标签:string   ble   cto   依次   效率   algo   解决方法   name   class   

原文地址:https://www.cnblogs.com/Roni-i/p/9565158.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!