码迷,mamicode.com
首页 > 其他好文 > 详细

暑假第二十九测

时间:2018-08-31 21:05:30      阅读:144      评论:0      收藏:0      [点我收藏+]

标签:表示   spl   sizeof   8 8   main   ace   贪心   code   efi   

技术分享图片

技术分享图片

技术分享图片

技术分享图片

第三题换成能否得到x, 可以1, 不可以-1

 

题解:

第一题:打表找规律;

打表发现a是:1 1 2 2 3 4 4 4 5 6 6 7 8 8 8 8 9……

对于每一项Ai = i拆分成质因数中有多少个2 + 1;如果把桶也给打出来,就发现他是这样的:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 +

      2 + 4 + 6 + 8 +

     4  + 8 +  

     8 + 

即2^i的等差数列,所以对一个数m我们就很容易确定他前面的数的和;

但是对于一个位置我们怎么找到他对应的m呢?

把上面那个式子换成每项为1就知道他前面有多少项了;

我们可以二分m,找到Ai前一个数m - 1,然后推出有多少个重复m;

技术分享图片
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int  mod = 1000000007;
const ll v2 = 500000004;
ll ksm(ll a, ll b){
    ll ret = 1;
    for(; b>>=1; a=a*a%mod)
        if(b&1)ret=ret*a%mod;
    return ret;
}

inline ll dc(ll a1, ll an, ll n){
    return (a1 % mod + an % mod) % mod * (n % mod) % mod * v2 % mod;
}

ll check(ll a){
    ll k = 1, ret = 0;
    while(k <= a){
        ret += a/k;
        k <<= 1;
    }
    return ret + 1;
}


ll work(ll a){
    if(!a)return 0;
    if(a == 1 || a == 2) return 1;
    ll lf = 1, rg = 1e18, ax;
    while(lf <= rg){
        ll mid = (lf + rg) >> 1;
        if(check(mid) < a)ax = mid, lf = mid + 1;
        else rg = mid - 1;
    }
    ll k = 1, ans = 0;
    while(k <= ax){
        ans = (ans + dc(k, ax / k * k, ax / k)) % mod;
        k <<= 1;
    }
    return ((ax + 1) % mod * (a - check(ax)) % mod + ans + 1) % mod;
}



int main(){
    freopen("me.in","r",stdin);
    freopen("me.out","w",stdout);
    ll L, R;
    cin>>L>>R;
    cout<<(work(R) - work(L - 1) + mod) % mod<<endl;
}
View Code

 

第二题:数据范围暗示dp;

dp[ i ][ s ] 表示我从小到大放数考虑到第i个数,现在 Sum(p) = j的方案数;

如果我当前放的数是最大的,那么整个序列就分成了前后两段互不影响的序列;所以我当前的贡献s 就是:

左边的贡献 * 右边的贡献 * c[i - 1][j] + min(j + 1, i - j) (当前数放在 j 这个位置后面, 第一段的贡献确定,数大小相对位置确定,所以该位随便填什么,只要相对大小确定就好了,所以乘上i - 1个数中选j个数的方案数);

这道题还有一个烟雾弹,x <= 100000, 其实x不可能达到很的数, n <= 80, 一个数最大为40, 他要是为40, 旁边就不会有39了,所以最后这个和是很小的;

枚举i, 位置j, 左右贡献,复杂度其实很优

技术分享图片
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod = 998244353; 
ll dp[85][10005], c[85][85];
int mx[85];
void init(){
    for(int i = 0; i <= 80; i++)
        for(int j = 0; j <= i; j++)
            if(i == 0 || j == 0)c[i][j] = 1;
            else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
}



int main(){

    freopen("good.in","r",stdin);
    freopen("good.out","w",stdout);
    int n, x, cnt = 0;
    scanf("%d%d", &n, &x);
    dp[0][0] = 1;
    init();
    for(int i = 1; i <= n; i++)
        for(int j = 0; j < i; j++)
            for(int k = 0; k <= mx[j]; k++)
                for(int kk = 0; kk <= mx[i - j - 1]; kk++){
                    dp[i][k + kk + min(j + 1, i - j)] = (dp[i][k + kk + min(j + 1, i - j)] +
                    (dp[j][k] * dp[i - j - 1][kk]) % mod * c[i - 1][j] % mod) % mod;
                    mx[i] = max(mx[i], k + kk + min(j + 1, i - j));
            }
    
    printf("%d\n", dp[n][x]);
}
View Code

 

第三题:一道神奇解法的题

x小的时候可以背包,但x大了怎么办;

贪心思想,先放最大的,剩下一小部分用其他填;

我们先全用大的填满,就会多出一截,可以用小的去换他,就相当于去消去这部分;比如多了10 就可以用5个2去替换10,所以每张牌贡献就是an - ai,我们最后只需知道是否可以替换多的部分就好了;但会出现一个情况 原来是5 5 5 5,现在用4 4 4 4 4 去替换,这是不合法的,因为前面5不够换了;所以记录替换成x的最少替换次数,如果当前值+ai >= an, 我们就可以用原来的an,不然就要多花一张牌来替换,这个东西可以用SPFA。。。

最后判断 dis[多的部分] <= 我原本的牌数;

技术分享图片
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int M = 100000+5, inf = 1e9;
ll dis[M];
int a[88];
queue <int> Q;
bool inq[M];
int main(){
    freopen("hungry.in","r",stdin);
    freopen("hungry.out","w",stdout);
    int n, q;
    scanf("%d%d", &n, &q);
    for(int i = 1; i <= n; i++)scanf("%d", a + i);
    sort(a + 1, a + 1 + n);
    for(int i = 1; i < n; i++)a[i] = a[n] - a[i];
    ll x = 0;    
        
        memset(dis, -1, sizeof(dis));
        inq[0] = 1; Q.push(0); dis[0] = 0;
        while(!Q.empty()){
            int u = Q.front(); Q.pop(); inq[u] = 0;
            for(int i = 1; i < n; i++){
                ll w = dis[u];
                
                int to = u + a[i];
            //    printf("%d %d %I64d\n", u,to,w);
                if(to >= a[n])to -= a[n];
                else w++;
            //    printf("%d %d %I64d\n\n",u,to, w);
                if(dis[to] > w || dis[to] == -1){
                    dis[to] = w;
                    if(!inq[to]){
                        Q.push(to);
                        inq[to] = 1;
                    }
                }
            }
            
        }
        while(q--){
            scanf("%I64d", &x);
            int own = (1LL*a[n] + x - 1) / (1LL*a[n]);
            int res = 1LL*a[n] * own - x;
            if(dis[res] > own || dis[res] == -1)puts("-1");
            else puts("1");
        }        
}
View Code

 

 

今天是我的暴力专场,第一题想推通项公式,但是他在下标下面,很明显没有,而且我也没有打桶的表,后两道题实在是在能力之外;

然而今天yl大佬又接近AK,%%%,不论题难或不难都是AK或AK边缘,tql

暑假第二十九测

标签:表示   spl   sizeof   8 8   main   ace   贪心   code   efi   

原文地址:https://www.cnblogs.com/EdSheeran/p/9566484.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!