标签:计算几何
题意:给你一条直线和若干个圆,求圆与直线相交的长度占整条直线的比例
解题思路:通过定比分点的方法求出圆与直线的交占圆的比例。
第一步:(确定投影的方向是x轴还是y轴)
(1)当直线的line.s(x, y), line.e(x, y)的line.s.x与line.e.x不同时,这条直线可以等同于起点为line.s.x, line.e.x;
(2)不满足(1)时(即line.s.x==line.e.x时),当直线的line.s(x, y), line.e(x, y)的line.s.y与line.e.y不同时,这条直线可以等同于起点为line.s.x, line.e.x;
(3)当不满足(1)以及(2)时(即line.s==line.e),这时候直线为一个点,任何的圆都与它没有交,圆占整条直线的比例为0;
第二步:(将圆投影到第一步得到的直线上)
求出圆在直线上的投影的范围;
第三步:
求出所有圆的并,将圆的并除以线段的长度,求圆与线段的交占线段的百分比;
#include <iostream> #include <algorithm> #include <cstdio> #include <cstdlib> #include <cmath> using namespace std; const int MAX = 300; struct Node { double x, y; }; struct Line { Node s, e; }; Line line; Node p[MAX]; double A, B, C, delta; double x, y, r; double x11, y11, dx, dy; Node tmp, cir; double sqr(double x) { return x * x; } int circle_cross_line(Node s, Node e, Node O, double r)//判断圆与直线是否有交点 { double x0 = O.x, y0=O.y; x11 = s.x, y11 = s.y; double x2 = e.x, y2 = e.y; dx = x2 - x11, dy = y2 - y11; A = dx * dx + dy*dy; B = 2 * dx * (x11 - x0) + 2 * dy * (y11 - y0); C = sqr(x11-x0) + sqr(y11-y0) - sqr(r); delta = sqr(B) - 4 * A * C; return delta > 0; } int cmp(Node a, Node b) { if (a.x < b.x) return 1; return 0; } int main() { int n, i, cnt; int flag, flagnum; double leng; while (scanf("%d", &n) && n) { flagnum = 0; scanf("%lf%lf%lf%lf", &line.s.x, &line.s.y, &line.e.x, &line.e.y); if (line.s.x!=line.e.x) { if (line.s.x < line.e.x) { tmp.x = line.s.x; tmp.y = line.e.x; } else { tmp.x = line.e.x; tmp.y = line.s.x; } flag = 0; leng = fabs(line.e.x - line.s.x); } else if (line.s.x==line.e.x && line.s.y!=line.e.y) { if (line.s.y < line.e.y) { tmp.x = line.s.y; tmp.y = line.e.y; } else { tmp.x = line.e.y; tmp.y = line.s.y; } flag = 1; leng = fabs(line.e.y - line.s.y); } else flagnum = 1; cnt = 0; for (i=0; i<n; i++) { scanf("%lf%lf%lf", &cir.x, &cir.y, &r); if (flagnum) continue; if (circle_cross_line(line.s, line.e, cir, r)) { p[cnt].x = (-B-sqrt(delta))/(2.0*A); p[cnt].y = (-B+sqrt(delta))/(2.0*A); if (flag==0) { p[cnt].x = p[cnt].x * dx + x11; p[cnt].y = p[cnt].y * dx + x11; } else { p[cnt].x = p[cnt].x * dy + y11; p[cnt].y = p[cnt].y * dy + y11; } if (p[cnt].x>p[cnt].y) { double t = p[cnt].x; p[cnt].x = p[cnt].y; p[cnt].y = t; } if (p[cnt].x>tmp.y || p[cnt].y<tmp.x) continue; if (p[cnt].x<tmp.x) p[cnt].x = tmp.x; if (p[cnt].y>tmp.y) p[cnt].y = tmp.y; cnt++; } } if (flagnum || cnt==0) printf("0.00\n"); else { sort(p, p+cnt, cmp); double sum = 0; tmp = p[0]; for (i=1; i<cnt; i++) { if (p[i].x < tmp.y) { if (p[i].y > tmp.y) tmp.y = p[i].y; } else { sum += tmp.y - tmp.x; tmp = p[i]; } } sum += tmp.y - tmp.x; printf("%.2f\n", sum/leng*100.0); } } return 0; }
poj3819 Coverage (求直线与圆的交占直线的百分比 )
标签:计算几何
原文地址:http://blog.csdn.net/u010499449/article/details/39855785