码迷,mamicode.com
首页 > 其他好文 > 详细

poj3819 Coverage (求直线与圆的交占直线的百分比 )

时间:2014-10-07 20:38:23      阅读:165      评论:0      收藏:0      [点我收藏+]

标签:计算几何

    题意:给你一条直线和若干个圆,求圆与直线相交的长度占整条直线的比例

   解题思路:通过定比分点的方法求出圆与直线的交占圆的比例。

    第一步:(确定投影的方向是x轴还是y轴) 

   (1)当直线的line.s(x, y), line.e(x, y)的line.s.x与line.e.x不同时,这条直线可以等同于起点为line.s.x, line.e.x;

   (2)不满足(1)时(即line.s.x==line.e.x时),当直线的line.s(x, y), line.e(x, y)的line.s.y与line.e.y不同时,这条直线可以等同于起点为line.s.x, line.e.x;

   (3)当不满足(1)以及(2)时(即line.s==line.e),这时候直线为一个点,任何的圆都与它没有交,圆占整条直线的比例为0;

    第二步:(将圆投影到第一步得到的直线上)

    求出圆在直线上的投影的范围;

    第三步:

    求出所有圆的并,将圆的并除以线段的长度,求圆与线段的交占线段的百分比;


   

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cmath>
using namespace  std;
const int MAX = 300;
struct Node
{
	double x, y;
};
struct Line
{
	Node s, e;
};
Line line;
Node p[MAX];
double A, B, C, delta;
double x, y, r;
double x11, y11, dx, dy;
Node tmp, cir;
double sqr(double x)
{
	return x * x;
}
int circle_cross_line(Node s, Node e, Node O, double r)//判断圆与直线是否有交点
{
	double x0 = O.x, y0=O.y;
	x11 = s.x, y11 = s.y;
	double x2 = e.x, y2 = e.y;
	dx = x2 - x11, dy = y2 - y11;
	A = dx * dx + dy*dy;
	B = 2 * dx * (x11 - x0) + 2 * dy * (y11 - y0);
	C = sqr(x11-x0) + sqr(y11-y0) - sqr(r);
	delta = sqr(B) - 4 * A * C;
	return delta > 0;
}
int cmp(Node a, Node b)
{
	if (a.x < b.x)
		return 1;
	return 0;
}
int main()
{
	int n, i, cnt;
	int flag, flagnum;
	double leng;
	while (scanf("%d", &n) && n)
	{
		flagnum = 0;
		scanf("%lf%lf%lf%lf", &line.s.x, &line.s.y, &line.e.x, &line.e.y);
		if (line.s.x!=line.e.x)
		{
			if (line.s.x < line.e.x)
			{
				tmp.x = line.s.x;
				tmp.y = line.e.x;
			}
			else
			{
				tmp.x = line.e.x;
				tmp.y = line.s.x;
			}
			flag = 0;
			leng = fabs(line.e.x - line.s.x);
		}
		else if (line.s.x==line.e.x && line.s.y!=line.e.y)
		{
			if (line.s.y < line.e.y)
			{
				tmp.x = line.s.y;
				tmp.y = line.e.y;
			}
			else
			{
				tmp.x = line.e.y;
				tmp.y = line.s.y;
			}
			flag = 1;
			leng = fabs(line.e.y - line.s.y);
		}
		else
			flagnum = 1;
		cnt = 0;
		for (i=0; i<n; i++)
		{
			scanf("%lf%lf%lf", &cir.x, &cir.y, &r);
			if (flagnum)
				continue;
			if (circle_cross_line(line.s, line.e, cir, r))
			{
				p[cnt].x = (-B-sqrt(delta))/(2.0*A);
				p[cnt].y = (-B+sqrt(delta))/(2.0*A);
				if (flag==0)
				{
					p[cnt].x = p[cnt].x * dx + x11;
					p[cnt].y = p[cnt].y * dx + x11;
				}
				else
				{
					p[cnt].x = p[cnt].x * dy + y11;
					p[cnt].y = p[cnt].y * dy + y11;
				}
				if (p[cnt].x>p[cnt].y)
				{
					double t = p[cnt].x;
					p[cnt].x = p[cnt].y;
					p[cnt].y = t;
				}
				if (p[cnt].x>tmp.y || p[cnt].y<tmp.x)
					continue;
				if (p[cnt].x<tmp.x)
					p[cnt].x = tmp.x;
				if (p[cnt].y>tmp.y)
					p[cnt].y = tmp.y; 
				cnt++;
			}
		}
		if (flagnum || cnt==0)
			printf("0.00\n");
		else
		{
			sort(p, p+cnt, cmp);
			double sum = 0;
			tmp = p[0];
			for (i=1; i<cnt; i++)
			{
				if (p[i].x < tmp.y)
				{
					if (p[i].y > tmp.y)
						tmp.y = p[i].y;
				}
				else
				{
					sum += tmp.y - tmp.x;
					tmp = p[i];
				}
			}
			sum += tmp.y - tmp.x;
			printf("%.2f\n", sum/leng*100.0);
		}
	}
	return 0;
}

  


poj3819 Coverage (求直线与圆的交占直线的百分比 )

标签:计算几何

原文地址:http://blog.csdn.net/u010499449/article/details/39855785

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!