码迷,mamicode.com
首页 > 其他好文 > 详细

Django框架 之 querySet详解

时间:2018-08-31 21:25:42      阅读:185      评论:0      收藏:0      [点我收藏+]

标签:sele   框架   理解   rom   bsp   取数据   ted   class   index   

浏览目录

  • 可切片

  • 可迭代

  • 惰性查询

  • 缓存机制

  • exists()与iterator()方法

 

QuerySet

可切片

使用Python 的切片语法来限制查询集记录的数目 。它等同于SQL 的LIMIT 和OFFSET 子句。

1
>>> Entry.objects.all()[:5]      # (LIMIT 5)

 

1
Entry.objects.all()[5:10]    # (OFFSET 5 LIMIT 5)

不支持负的索引(例如Entry.objects.all()[-1])。通常,查询集 的切片返回一个新的查询集 —— 它不会执行查询。   

可迭代

1
2
3
4
articleList=models.Article.objects.all()
 
for article in articleList:
    print(article.title)  

惰性查询

查询集 是惰性执行的 —— 创建查询集不会带来任何数据库的访问。你可以将过滤器保持一整天,直到查询集 需要求值时,Django 才会真正运行这个查询。

1
2
3
4
5
6
queryResult=models.Article.objects.all() # not hits database
  
print(queryResult) # hits database
  
for article in queryResult:
    print(article.title)    # hits database

 一般来说,只有在“请求”查询集 的结果时才会到数据库中去获取它们。当你确实需要结果时,查询集 通过访问数据库来求值。 关于求值发生的准确时间,参见何时计算查询集。  

缓存机制

每个查询集都包含一个缓存来最小化对数据库的访问。理解它是如何工作的将让你编写最高效的代码。

在一个新创建的查询集中,缓存为空。首次对查询集进行求值 —— 同时发生数据库查询 ——Django 将保存查询的结果到查询集的缓存中并返回明确请求的结果(例如,如果正在迭代查询集,则返回下一个结果)。接下来对该查询集 的求值将重用缓存的结果。

请牢记这个缓存行为,因为对查询集使用不当的话,它会坑你的。例如,下面的语句创建两个查询集,对它们求值,然后扔掉它们:

1
2
print([a.title for in models.Article.objects.all()])
print([a.create_time for in models.Article.objects.all()])

这意味着相同的数据库查询将执行两次,显然倍增了你的数据库负载。同时,还有可能两个结果列表并不包含相同的数据库记录,因为在两次请求期间有可能有Article被添加进来或删除掉。为了避免这个问题,只需保存查询集并重新使用它: 

1
2
3
queryResult=models.Article.objects.all()
print([a.title for in queryResult])
print([a.create_time for in queryResult])

何时查询集不会被缓存?

查询集不会永远缓存它们的结果。当只对查询集的部分进行求值时会检查缓存, 如果这个部分不在缓存中,那么接下来查询返回的记录都将不会被缓存。所以,这意味着使用切片或索引来限制查询集将不会填充缓存。

例如,重复获取查询集对象中一个特定的索引将每次都查询数据库:

1
2
3
>>> queryset = Entry.objects.all()
>>> print queryset[5# Queries the database
>>> print queryset[5# Queries the database again

然而,如果已经对全部查询集求值过,则将检查缓存:  

1
2
3
4
>>> queryset = Entry.objects.all()
>>> [entry for entry in queryset] # Queries the database
>>> print queryset[5# Uses cache
>>> print queryset[5# Uses cache

下面是一些其它例子,它们会使得全部的查询集被求值并填充到缓存中:

1
2
3
4
>>> [entry for entry in queryset]
>>> bool(queryset)
>>> entry in queryset
>>> list(queryset)

注:简单地打印查询集不会填充缓存。  

1
2
3
queryResult=models.Article.objects.all()
print(queryResult) #  hits database
print(queryResult) #  hits database 

exists()与iterator()方法

exists:

简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些 数据!为了避免这个,可以用exists()方法来检查是否有数据:

1
2
3
if queryResult.exists():
    #SELECT (1) AS "a" FROM "blog_article" LIMIT 1; args=()
        print("exists...")

iterator:

当queryset非常巨大时,cache会成为问题。

处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。

1
2
3
4
5
6
7
objs = Book.objects.all().iterator()
# iterator()可以一次只从数据库获取少量数据,这样可以节省内存
for obj in objs:
    print(obj.title)
#BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了
for obj in objs:
    print(obj.title)

当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使 #用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询。

总结:

queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。 使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能 会造成额外的数据库查询。 

Django框架 之 querySet详解

标签:sele   框架   理解   rom   bsp   取数据   ted   class   index   

原文地址:https://www.cnblogs.com/hanbowen/p/9567464.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
分享档案
周排行
mamicode.com排行更多图片
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!