标签:reg pre uil tps ted agg set example overview
Reducer receives (key, values) pairs and aggregate values to a desired format, then write produced (key, value) pairs back into HDFS.
Reducer<Text, IntWritable, Text, IntWritable>
// Text:: INPUT_KEY
// IntWritable:: INPUT_VALUE
// Text:: OUTPUT_KEY
// IntWritable:: OUTPUT_VALUE
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException
// Text key:: Declare data type of input key;
// Iterable<IntWritable> values:: Declare data type of input values; (Note: Received values from mapper should be in a list)
// Context context:: Declare data type of output. Context is often used for output data collection.
// Iterate through all the values wrt the key:
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
// Convert built-in int into IntWritable
result.set(sum);
// build (key, value) pair into Context and emit:
context.write(key, result);
Reducer class produces Reducer.Context object and serialize obtained (key, value) pair into HDFS.
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
Written with StackEdit.
Wordcount -- MapReduce example -- Reducer
标签:reg pre uil tps ted agg set example overview
原文地址:https://www.cnblogs.com/LexLuc/p/9571033.html