标签:set turn for sel int space bre fonts line
The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a "Hamiltonian cycle".
In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.
Each input file contains one test case. For each case, the first line contains 2 positive integers N (2), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format Vertex1 Vertex2
, where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:
n V?1?? V?2?? ... V?n??
where n is the number of vertices in the list, and V?i??‘s are the vertices on a path.
For each query, print in a line YES
if the path does form a Hamiltonian cycle, or NO
if not.
6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1
YES NO NO NO YES NO
#include<iostream> #include<vector> #include<set> using namespace std; int main(){ int n, m, i, j; scanf("%d%d", &n, &m); vector<set<int> > v(n+1); for(i=0; i<m; i++){ int a, b; scanf("%d%d", &a, &b); v[a].insert(b); v[b].insert(a); } int k; scanf("%d", &k); for(i=0; i<k; i++){ int cnt, vertex; scanf("%d", &cnt); vector<int> qry(cnt), vis(n+1, false); for(j=0; j<cnt; j++) scanf("%d", &qry[j]); bool flag=false; if(cnt!=n+1 || qry[0]!=qry[cnt-1])flag=true; else{ for(j=0; j<cnt-1; j++){ if(!vis[qry[j]] && v[qry[j]].find(qry[j+1])!=v[qry[j]].end()) vis[qry[j]]=true; else{ flag=true; break; } } } printf("%s\n", flag ? "NO" : "YES"); } return 0; }
标签:set turn for sel int space bre fonts line
原文地址:https://www.cnblogs.com/mr-stn/p/9571494.html