标签:\n turn max 完整 i++ 连接 tac opera ios
题意:给你n个点,m条边的有向带权图,然后你每次可以选<=k条边的边权变成0,问你1到n的最短路;
解题思路:这道题基本上就是原题了呀,bzoj2763(无向图),解法就是拆点跑分层的最短路,比如这道题,你用了一次变为0,就相当于进入了下一个层次;
我们把每个点都拆成k个层次点,每个相同层次的点按输入的边权连接,每个点可以向它能连接到的点的下一个层次连接一条边权为0的边;
意思就是:输入x到y权值为w的边
    for(int i=1;i<=m;i++)
        {
            scanf("%lld%lld%lld",&x,&y,&w);
            for(int j=0;j<=k;j++)
            {
                add(x+j*n,y+j*n,w);同一层次的点;
                if(j!=k)
                add(x+j*n,y+(j+1)*n,0);不同层次的点,可以向它能连接的下一个层次连一个边权为0;
            }
        }
完整代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<queue>
#include<stack>
#define ll long long
using namespace std;
const int maxm=3000500;
const ll inf=0x7f7f7f7f;
const int maxn=100500;
struct node
{
    ll num;
    ll dist;
    node(ll _num,ll _dist):num(_num),dist(_dist){}
    friend bool operator<(node a,node b)
    {
        return a.dist>b.dist;
    }
};
struct Edge
{
    ll next;
    ll to;
    ll w;
}edge[maxm*2];
int head[maxm];
ll dist[maxm];
int cnt;
int  n,m,k;
void add(ll u,ll v,ll w)
{
    edge[cnt].next=head[u];
    edge[cnt].to=v;
    edge[cnt].w=w;
    head[u]=cnt++;
}
void dij(int u)
{
    priority_queue<node>q;
    memset(dist,inf,sizeof(dist));
    dist[u]=0;
    q.push(node(u,dist[u]));
    while(!q.empty())
    {
        node now=q.top();
        //cout<<now.num<<" "<<now.dist<<endl;
        q.pop();
        int x=now.num;
        for(int i=head[x];i!=-1;i=edge[i].next)
        {
            int v=edge[i].to;
            if(dist[v]>dist[x]+edge[i].w)
            {
                dist[v]=dist[x]+edge[i].w;
                q.push(node(v,dist[v]));
            }
        }
    }
}
int main()
{
    int tt;
    ll x,y,w;
    scanf("%d",&tt);
    while(tt--)
    {
        memset(head,-1,sizeof(head));cnt=0;
        scanf("%d%d%d",&n,&m,&k);
        if(k>=m)
        {
            printf("0\n");
            continue;
        }
        for(int i=1;i<=m;i++)
        {
            scanf("%lld%lld%lld",&x,&y,&w);
            for(int j=0;j<=k;j++)
            {
                add(x+j*n,y+j*n,w);
                if(j!=k)
                add(x+j*n,y+(j+1)*n,0);
            }
        }
        dij(1);
        ll ans=inf;
        for(int i=0;i<=k;i++)
        {
            ans=min(ans,dist[n+i*n]);
        }
        printf("%lld\n",ans);
    }
}
标签:\n turn max 完整 i++ 连接 tac opera ios
原文地址:https://www.cnblogs.com/huangdao/p/9571652.html