码迷,mamicode.com
首页 > 其他好文 > 详细

文本分类任务简介

时间:2018-09-03 19:59:04      阅读:161      评论:0      收藏:0      [点我收藏+]

标签:lda   文章   过滤   工程   lsa   挖掘   提取   等等   大小   

文本分类任务框架:

文本→特征工程(决定着模型分类的上界)→分类器(逼近模型的上限)→类别

文本特征提取:

1.经典的文本特征(前人的研究的成熟理论)

2.手工构造新的特征(手工提取,看数据集中是否有好的性特征)

3.用神经网络提取(神经网络仅作为特征提取器来用)

经典的文本特征:

TF、TFIDF、Doc2vec、Word2vec

TF词频

TFIDF:词频-逆向文件频率(TF-IDF)是一种在文本挖掘中广泛使用的特征向量化方法,它可以体现一个文档中词语在语料库中的重要程度。

Doc2vec:文档到向量。主要是用深度学习的方法去训练,将文本转化为向量。

Word2vec:文本到向量,是一个分类器,它采用一系列代表文档的词语来训练word2vec model。该模型将每个词语映射到一个固定大小的向量。word2vec model使用文档中每个词语的平均数来将文档转换为向量,然后这个向量可以作为预测的特征,来计算文档相似度计算等等。

 构造新特征:

1.寻找可能会影响分类的新特征。文章长度可能会影响到分类,所以可以把文章的长度作为一个新特征。

2、人工构造可能影响分类的新特征。

神经网络提取

特征选择:

为什么要进行特征选择?

减弱维度灾难,计算量降低。

降低学习难度。

特征选择的方法有什么?

包裹式:从一组特征中挑出几个子集进行训练验证,最后选择最优的子集。

嵌入式:用分类器进行特征选择。logistic回归中将w向量中比较小的(权重小的)剔除。

过滤式:在分类器之前单独对特征进行过滤。

特征降维:

将一个高维向量进行低维映射。

有监督降维:(使用了样本类别信息)LDA,即线性判别分析

无监督降维:LSA浅层语义分析、LDA对词频矩阵进行分解,得到向量、NMF对TFIDF进行矩阵分解。

 

文本分类任务简介

标签:lda   文章   过滤   工程   lsa   挖掘   提取   等等   大小   

原文地址:https://www.cnblogs.com/jayechan/p/9580442.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!