码迷,mamicode.com
首页 > 其他好文 > 详细

CodeForces922E DP//多重背包的二进制优化

时间:2018-09-04 00:10:24      阅读:168      评论:0      收藏:0      [点我收藏+]

标签:style   name   --   cto   tmp   一条直线   直线   接受   优化   

https://cn.vjudge.net/problem/1365218/origin

题意 一条直线上有n棵树 每棵树上有ci只鸟 在一棵树底下召唤一只鸟的魔法代价是costi 每召唤一只鸟,魔法上限会增加B 从一棵树走到另一棵树,会增加魔法X 一开始的魔法和魔法上限都是W 问最多能够召唤的鸟的个数

显然这是一道DP题

用dp[i][j]来表示到j这个树下选到j只鸟可以获得的最大能量值

很容易得出dp状态转移方程dp[i][j] = max(dp[i][j],dp[i][j - 1] - cost,dp[i - 1][j - 1] - cost);

由于每棵树上的鸟数量有限制,需要多一重大小为c的循环,但是因为∑c为1e3,三重循环的时间复杂度事实上仅为O(n * sum(c))可以接受

初始状态是dp[i][0] = W; 其他的状态为-1表示无法到达

进而可以考虑到每棵树事实上是一个多重背包,在dp的过程中考虑二进制优化,以及将dp开成滚动数组来优化空间

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)  
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))  
#define Sca(x) scanf("%d", &x)
#define Scl(x) scanf("%lld",&x);  
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);  
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long  
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second 
typedef vector<int> VI;
const double eps = 1e-9;
const int maxn = 1e3 + 10;
const int maxm = 1e4 + 10;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7; 
int N,M,tmp,K;
LL W,B,X;
LL dp[2][maxm];
PIL b[maxn];
vector<PIL>P;
int C[maxn];
int main()
{
    scanf("%d%lld%lld%lld",&N,&W,&B,&X);
    int sum = 0;
    Mem(dp,-1);
    For(i,1,N) Sca(C[i]);
    For(i,1,N){
        Mem(dp[i & 1],-1);
        dp[i & 1][0] = W;
        int c = C[i]; LL cost;
        scanf("%lld",&cost);
        P.clear();
        P.pb(mp(0,0));
        sum += c;
        //cout << sum <<endl;
        tmp = 0;
        for(int j = 1; j <= c; j <<= 1){
            P.pb(mp(j,cost * j));
            c -= j;
        }
        if(c) P.pb(mp(c,cost * c));
        for(int k = 0 ; k < P.size(); k ++){
            PIL u = P[k];
            for(int j = sum;j >= u.fi ; j--){
                if(dp[i & 1][j - u.fi] >= u.se) dp[i & 1][j] = max(dp[i & 1][j],dp[i & 1][j - u.fi] - u.se);
                if(dp[i - 1 & 1][j - u.fi] == -1) continue;
                LL t = min(dp[i - 1 & 1][j - u.fi] + X,W + B * (j - u.fi));
                if(t >= u.se) dp[i & 1][j] = max(dp[i & 1][j],t - u.se);
            }
        }
    }
    int ans;
    _For(i,sum,0){
        if(dp[N & 1][i] != -1){
            ans = i;
            break;
        }
    }
    Pri(ans);
    return 0;
}

 

CodeForces922E DP//多重背包的二进制优化

标签:style   name   --   cto   tmp   一条直线   直线   接受   优化   

原文地址:https://www.cnblogs.com/Hugh-Locke/p/9581694.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!