标签:树查询 cstring uniq names fine 位置 getc har 区间
动态区间 $k$ 大
主席树 + 树状数组
树状数组的每个点对应一颗线段树
首先将所有点加入数据结构
枚举 x
code: for(int i = x; i <= n; i += Lowbit(i)) Poi_G(root[i], 1, Length, k, val);
区间修改时
将所有的后缀树的相应位置 -1, 再 +1
主席树查询时
在计算区间和的时候
类似树状数组的查询
将用到的线段树的相应节点加或减
#include <iostream> #include <cstdio> #include <algorithm> #include <cmath> #include <cstring> #include <string> using namespace std; #define LL long long #define gc getchar() inline int read() {int x = 0; char c = gc; while(c < ‘0‘ || c > ‘9‘) c = gc; while(c >= ‘0‘ && c <= ‘9‘) x = x * 10 + c - ‘0‘, c = gc; return x;} inline LL read_LL() {LL x = 0; char c = gc; while(c < ‘0‘ || c > ‘9‘) c = gc; while(c >= ‘0‘ && c <= ‘9‘) x = x * 10 + c - ‘0‘, c = gc; return x;} #undef gc const int N = 1e5 + 10; struct Node {int opt, l, r, k;} Ask[N]; int n, m; int A[N], Num[N << 1], Length; int root[N], Lson[N * 400], Rson[N * 400], W[N * 400]; int root_add[30], root_cut[30]; int jsadd, jscut; int Lowbit(int x) {return (x & (-x));} int Hjt; void Poi_G(int &rt, int l, int r, int k, int val) { if(!rt) rt = ++ Hjt; W[rt] += val; if(l == r) return ; int mid = (l + r) >> 1; if(k <= mid) Poi_G(Lson[rt], l, mid, k, val); else Poi_G(Rson[rt], mid + 1, r, k, val); } void Pre_Poi_G(int x, int val) { int k = lower_bound(Num + 1, Num + Length + 1, A[x]) - Num; for(int i = x; i <= n; i += Lowbit(i)) Poi_G(root[i], 1, Length, k, val); } int Sec_A(int l, int r, int k) { if(l == r) return l; int sum = 0; for(int i = 1; i <= jsadd; i ++) sum += W[Lson[root_add[i]]]; for(int i = 1; i <= jscut; i ++) sum -= W[Lson[root_cut[i]]]; int mid = (l + r) >> 1; if(k <= sum) { for(int i = 1; i <= jsadd; i ++) root_add[i] = Lson[root_add[i]]; for(int i = 1; i <= jscut; i ++) root_cut[i] = Lson[root_cut[i]]; return Sec_A(l, mid, k); } else { for(int i = 1; i <= jsadd; i ++) root_add[i] = Rson[root_add[i]]; for(int i = 1; i <= jscut; i ++) root_cut[i] = Rson[root_cut[i]]; return Sec_A(mid + 1, r, k - sum); } } int Pre_Sec_A(int l, int r, int k) { memset(root_add, 0, sizeof root_add); memset(root_add, 0, sizeof root_add); jsadd = jscut = 0; for(int i = r; i; i -= Lowbit(i)) root_add[++ jsadd] = root[i]; for(int i = l - 1; i; i -= Lowbit(i)) root_cut[++ jscut] = root[i]; return Sec_A(1, Length, k); } int main() { n = read(), m = read(); for(int i = 1; i <= n; i ++) A[i] = read(), Num[++ Length] = A[i]; for(int i = 1; i <= m; i ++) { char c[2]; scanf("%s", c); Ask[i].opt = (c[0] == ‘Q‘ ? 1 : 0); if(Ask[i].opt == 1) Ask[i].l = read(), Ask[i].r = read(), Ask[i].k = read(); else {Ask[i].l = read(), Ask[i].k = read(), Num[++ Length] = Ask[i].k;} } sort(Num + 1, Num + Length + 1); Length = unique(Num + 1, Num + Length + 1) - Num - 1; for(int i = 1; i <= n; i ++) Pre_Poi_G(i, 1); for(int i = 1; i <= m; i ++) { if(Ask[i].opt == 1) { int Ans = Num[Pre_Sec_A(Ask[i].l, Ask[i].r, Ask[i].k)]; printf("%d\n", Ans); } else { Pre_Poi_G(Ask[i].l, -1); A[Ask[i].l] = Ask[i].k; Pre_Poi_G(Ask[i].l, 1); } } return 0; }
标签:树查询 cstring uniq names fine 位置 getc har 区间
原文地址:https://www.cnblogs.com/shandongs1/p/9583470.html