标签:func 形参 cell group elm may Collector 处理 优化
读过之前文章的读者应该还记得,session是一个执行代理。我们把计算图和输入交给session,由它来调度执行器,执行计算产生结果。TF给我们提供了一个最简单的执行器direction_session。按照当前的理解,我们觉得direction_session的实现应该是非常简单而直接的,毕竟执行器的复杂结构我们在executor那篇已经见到了。但实际上,问题的难点在于,有时候我们只是希望以计算图中某些节点为输入,某些节点为输出,来执行图中的一小部分计算,而不需要执行整张图,另外一个方面,这种对图部分执行的任务,在同一张图上可能同时存在多个。为了应对这种情况,direct_session就衍生出了很多辅助数据。
DirectSession类提供了丰富的数据和接口,以下为了表达简洁,我们略去了部分函数的形参:
class DirectSession : public Session {
public:
DirectionSession(const SessionOptions& options, const Device* device_mgr, DirectSessionFactory* factory);
Status Create(const GraphDef& graph) override;
Status Extend(const GraphDef& graph) override;
Status Run(...) override;//运行图
Status PRunSetup(...);//部分运行图准备
Status PRun(...);//部分运行图
Status Reset(const std::vector<string>& containers);//清空device_mgr中的containers,如果containers本身就是空的,那么清空默认容器
Status ListDevice(...) override;
Status Close() overrides;
Status LocalDeviceManager(const DeviceMgr** output) overrides;
void ExportCostModels(...);
private:
Status MaybeInitializeExecutionState(...);//给定graph之后,如果执行器状态没有初始化,则初始化基础的执行器状态
Status GetOrCreateExecutors(...);//对于一组给定的输入和输出,在一个给定的执行器集合中检索,是否存在合适的执行器,如果没有,则创造一个
Status CreateGraphs(...);//给定graph_def_和设备,以及输入和输出,创造多张图,这些新创建的图共享一个公共的函数库flib_def
Status ExtendLocked(const GraphDef& graph);//Extend的内部执行类
Status ResourceHandleToInputTensor(...);
Status SendPRunInputs(...);//将更多的输入提供给执行器,启动后续的执行
Status RecvPRunOutputs(...);//从执行器中获取更多的输出,它会等待直到输出张量计算完成
Status CheckFetch(...);//检查需求的输出能否根据给定的输入计算出来
Status WaitForNotification(...);
Status CheckNotClosed();
const SessionOptions options_;
//设备相关的结构
const std::unique_ptr<const DeviceMgr> device_mgr_;
std::vector<Device*> devices_;
DeviceSet device_set_;
string session_handle_;
bool graph_created_ GUARDED_BY(graph_def_lock_) = false;
mutex graph_def_lock_;
GraphDef graph_def_ GUARDED_BY(graph_def_lock_);
std::vector<std::pair<thread::ThreadPool*, bool>> thread_pools_;//被用来执行op的线程池,用一个布尔值来标志,是否拥有这个线程池
Status init_error_;
bool sync_on_finish_ = true;//如果为真,阻塞线程直到设备已经完成了某个步骤内的所有队列中的操作
void SchedClosure(thread::ThreadPool* pool, std::function<void()> c);//在线程池中调度c
mutex executor_lock_;//保护执行器
std::unordered_map<string, std::shared_ptr<ExecutorsAndkeys>> executor_ GUARDED_BY(executor_lock_);//由签名映射到它的执行器,签名包括了部分执行图的输入和输出,由这两个就能唯一确定一个部分执行图
std::unordered_map<string, std::shared_ptr<RunState>> partial_runs_ GUARDED_BY(executor_lock_);//从签名到部分执行状态,每一个部分执行都会有一个专门保存其状态的结构
SessionState session_state_;//保存了所有当前在会话中正在存活的张量
DirectSessionFactory* const factory_;
CancellationManager* cancellation_manager_;
std::unordered_map<string, string> stateful_placements_ GUARDED_BY(graph_def_lock_);//对于有状态的节点(比如params和queue),保存节点名称到节点所在设备的映射,一旦这些节点被放置在了某个设备上,是不允许再移动的
std::unique_ptr<SimpleGraphExecutionState> execution_state_ GUARDED_BY(graph_def_lock_);//放置整张图时使用
std::unique_ptr<FunctionLibraryDefinition> flib_def_;//在任何的重写或优化之前的函数库,特别是,CreateGraphs函数会修改函数库
mutex closed_lock_;
bool closed_ GUARDED_BY(closed_lock_) = false;//如果会话已经被关闭,则为true
//为这个会话生成唯一的名字
std::atomic<int64> edge_name_counter_ = {0};
std::atomic<int64> handle_name_counter_ = {0};
static std::atomic_int_fast64_t step_id_counter_;//为所有的会话生成唯一的step id
const int64 operation_timeout_in_ms_ = 0;//全局对阻塞操作的超时阈值
CostModelManager cost_model_manager_;//为当前会话中执行的图管理所有的损失模型
}
可见,DirectSession里面的很多内容都是为部分执行准备的。由于计算图仅是一个计算的规划,我们可以通过为同一张图选取不同的输入和输出,来执行不同的计算。而不同的计算需要不同的执行器,也需要不同的存储结构来保存各个计算的当前状态。为此,TF专门给出了几个结构体,首先我们来看一下对不同计算执行器的封装:
//为每一个partition准备的执行器和函数运行时库
struct PerPartionExecutorAndLib {
Graph* graph = nullptr;
std::unique_ptr<FunctionLibraryRuntime> flib;
std::unique_ptr<Executor> executor;
};
//为每一次计算提供的数据结构
struct ExecutorsAndKeys {
std::atomic_int_fast64_t step_count;
std::unique_ptr<Graph> graph;
NameNodeMap name_to_node;
std::unique_ptr<FunctionLibraryDefinition> flib_def;
std::vector<PerPartitionExecutorsAndLib> items;
std::unordered_map<string, size_t> input_name_to_index;
std::unordered_map<string, string> input_name_to_rendezvous_key;
std::unordered_map<string, size_t> output_name_to_index;
std::unordered_map<string, string> output_name_to_rendezvous_key;
DataTypeVector input_types;
DataTypeVector output_types;
};
对于一张计算图来说,我们的每一次计算的执行,不论是完整图的计算还是部分图的计算,都有可能是跨设备的,因此都需要先做节点放置,把图的节点分割到不同的设备上,每一个设备上放置了一个图的partition,每个partition有对应的运行时函数库和执行器。而对于每一种计算来说,我们需要一个vector把不同partition的信息存储起来。
另外,刚才提到我们还需要为每一次计算提供保存当前状态的结构,下面就来看一下:
//对于每一个partition内的执行,会话保存了一个RunState
struct RunState {
mutex mu_;
Status status GUARDED_BY(mu_);
IntraProcessRendezvous* rendez = nullptr;
std::unique_ptr<StepStatsCollector> collector;
Notification executors_done;
std::unordered_map<string, bool> pending_inputs;//如果已经提供了输入,则为true
std::unordered_map<string, bool> pending_outputs;//如果已经获得了输出,则为true
TensorStore tensor_store;
ScopedStepContainer step-container;
//...
};
struct RunStateArgs {
RunStateArgs(const DebugOption& options) : debug_options(options) {}
bool is_partial_run = false;
string handle;
std::unique_ptr<Graph> graph;
const DebugOptions& debug_options;
};
其中,RunState为每一个partition的执行提供了状态保存的功能,而RunStateArgs则为前者提供了用于调试的参数和配置。
在源文件里,给出了DirectSessionFactory的定义,它提供了对于DirectSession进行生成和管理的功能,简要摘录如下:
class DirectSessionFactory : public SessionFactory {
public:
Session* NewSession(const SessionOptions& options) override;
Status Reset(...) override;
void Deregister(const DirectSession* session);
private:
mutex session_lock_;
std::vector<DirectSession*> session_ GUARDED_BY(sessions_lock_);//用于存储生成的DirectSession
};
另外,还提供了一个对于直接工厂注册的类:
class DirectSessionRegistrar {
public:
DirectSessionRegistrar() {
SessionFactory::Register("DIRECT_SESSION", new DirectSessionFactory());
}
};
static DirectSessionRegistrar registrar;
下面,我们会按照顺序对DirectSession内重要的函数,进行拆解,由于部分函数细节比较多,除了核心代码之外,我们仅给出功能解释:
DirectSession::DirectSession(const SessionOptions& options, const DeviceMgr* device_mgr, DirectSessionFactory* const factory){
//根据options准备线程池
//根据device_mgr准备device_和device_set_和每个设备的op_segment()
}
Status DirectSession::Run(...){
//提取对于当前会话的本次运行的输入的名称
//检查对于所需的输入输出,是否已经存在现成的执行器
//构造一个调用帧(call frame),方便会话与执行器之间传递输入和输出
//创建一个运行时状态的结构(RunState)
//开始并行执行,核心代码如下
for(const auto& item : executors_and_keys->items){
item.executor->RunAsync(args, barrier->Get());
}
//获取输出
//保存本次运行中我们希望保存的输出张量
//创建并返回损失模型(cost model)
//如果RunOptions中有相关配置,输出分割后的图
}
Status DirectSession::GetOrCreateExecutors(...){
//快速查找路径
//慢查找路径,对输入和输出做排序,使得相同输入和输出集合会得到相同的签名
//如果未找到,则创建这个执行器并缓存
//构建执行图,核心代码如下
CreateGraphs(options, &graphs, &ek->flib_def, run_state_args, &ek->input_types, &ek->output_types));
//为各子图准备运行时环境
}
Status DirectSession::CreateGraphs(...){
//前期预处理
//图分割算法,核心代码如下
Partition(popts, &client_graph->graph, &partitions);
//检查分割结果的有效性
//图优化遍历,核心代码如下
OptimizationPassRegistry::Global()->RunGrouping(OptimizationPassRegistry::POST_PARTITIONING, optimization_options);
//允许设备重写它拥有的子图
}
可见,具体的执行过程是在Run函数内部,调用executor->RunAsync函数来实现的,在具体执行之前,我们还需要通过GetOrCreateExecutors函数获得执行器,在这个函数内部,我们通过CreateGraphs函数对原图进行了分割,并利用图优化遍历算法对图进行了优化。
tensorflow源码解析之common_runtime-direct_session
标签:func 形参 cell group elm may Collector 处理 优化
原文地址:https://www.cnblogs.com/jicanghai/p/9589285.html