标签:one ace minimum bottom use ber start tput find
A robot is located at the top-left corner of a m x n grid (marked ‘Start‘ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish‘ in the diagram below).
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
Note: m and n will be at most 100.
Input:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
Output: 2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right
记 nums[i][j] 表示从 (i,j) 点到达右下角的不同路径数。那么有如下递归式:
\[
nums[i][j] = \lbrace
\begin{align}
nums[i + 1][j] + num[i][j + 1] , \;(i,j) 处无障碍 \0,\;(i,j) 处有障碍
\end{align}
\]
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m, n;
if((m = obstacleGrid.length) < 1 || (n = obstacleGrid[0].length) < 1){
return 0;
}
int[][] nums = new int[m][n];
if((nums[m - 1][n - 1] = 1 - obstacleGrid[m - 1][n - 1]) == 0){
return 0;
}
for(int i = n - 2; i > -1; i--){
if(obstacleGrid[m - 1][i] == 1){
nums[m - 1][i] = 0;
}
else{
nums[m - 1][i] = nums[m - 1][i + 1];
}
}
for(int i = m - 2; i > -1; i--){
if(obstacleGrid[i][n - 1] == 1){
nums[i][n - 1] = 0;
}
else{
nums[i][n - 1] = nums[i + 1][n - 1];
}
}
for(int i = m - 2; i > -1; i--){
for(int j = n - 2; j > -1; j--){
if(obstacleGrid[i][j] == 1){
nums[i][j] = 0;
}
else{
nums[i][j] = nums[i + 1][j] + nums[i][j + 1];
}
}
}
return nums[0][0];
}
}
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
class Solution {
public int minPathSum(int[][] grid) {
int m = grid.length, n = grid[0].length;
int[][] price = new int[m][n];
price[m - 1][n - 1] = grid[m - 1][n - 1];
for(int i = n -2; i > -1; i--){
price[m - 1][i] = price[m - 1][i + 1] + grid[m - 1][i];
}
for(int i = m - 2; i > -1; i--){
price[i][n - 1] = price[i + 1][n - 1] + grid[i][n - 1];
}
for(int i = m - 2; i> -1; i--){
for(int j = n -2; j > -1; j--){
price[i][j] = price[i + 1][j];
if(price[i][j] > price[i][j + 1]){
price[i][j] = price[i][j + 1];
}
price[i][j] += grid[i][j];
}
}
return price[0][0];
}
}
标签:one ace minimum bottom use ber start tput find
原文地址:https://www.cnblogs.com/echie/p/9594499.html