码迷,mamicode.com
首页 > 其他好文 > 详细

如何高效快速的学习大数据

时间:2018-09-07 11:57:23      阅读:196      评论:0      收藏:0      [点我收藏+]

标签:ganglia   挖掘   服务器   http   写代码   机器   phoenix   文件   整理   

技术分享图片

 

 

经常有初学者在博客和QQ问我,自己想往大数据方向发展,该学哪些技术,学习路线是什么样的,觉得大数据很火,就业很好,薪资很高。。。。。。。如果自己很迷茫,为了这些原因想往大数据方向发展,也可以,那么我就想问一下,你的专业是什么,对于计算机/软件,你的兴趣是什么?是计算机专业,对操作系统、硬件、网络、服务器感兴趣?是软件专业,对软件开发、编程、写代码感兴趣?还是数学、统计学专业,对数据和数字特别感兴趣。。

其实这就是想告诉你的大数据的三个发展方向,平台搭建/优化/运维/监控、大数据开发/设计/架构、数据分析/挖掘。请不要问我哪个容易,哪个前景好,哪个钱多。

我先普及一下大数据的4V特征:

  1. 数据量大,TB->PB

  2. 数据类型繁多,结构化、非结构化文本、日志、视频、图片、地理位置等;

  3. 商业价值高,但是这种价值需要在海量数据之上,通过数据分析与机器学习更快速的挖掘出来;

  4. 处理时效性高,海量数据的处理需求不再局限在离线计算当中。

现如今,开源的大数据框架越来越多,越来越强,如下是我列举的关于大数据技术方面的几个服务框架:

文件存储:Hadoop HDFS、Tachyon、KFS

离线计算:Hadoop MapReduce、Spark

流式、实时计算:Storm、Spark Streaming、S4、Heron

K-V、NOSQL数据库:HBase、Redis、MongoDB

资源管理:YARN、Mesos

日志收集:Flume、Scribe、Logstash、Kibana

消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ

查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid

分布式协调服务:Zookeeper

集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager

数据挖掘、机器学习:Mahout、Spark MLLib

数据同步:Sqoop

任务调度:Oozie

这么多东东,怎么开始,怎么学习,别急,小编告诉你怎么玩这些:大数据学习资料分享群119599574 不管你是小白还是大牛,小编我都挺欢迎,不定期分享干货,包括我自己整理的一份最新的适合2018年学习的大数据开发和零基础入门教程,欢迎初学和进阶中的小伙伴

如何高效快速的学习大数据

标签:ganglia   挖掘   服务器   http   写代码   机器   phoenix   文件   整理   

原文地址:https://www.cnblogs.com/Aa123456780/p/9603553.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!