码迷,mamicode.com
首页 > 其他好文 > 详细

混淆矩阵(Confusion matrix)的原理及使用(scikit-learn 和 tensorflow)

时间:2018-09-08 15:35:33      阅读:820      评论:0      收藏:0      [点我收藏+]

标签:flow   接口   red   size   turn   大小   sub   tar   and   

原理

  在机器学习中, 混淆矩阵是一个误差矩阵, 常用来可视化地评估监督学习算法的性能. 混淆矩阵大小为 num_classes x num_classes 的方阵, 其中 num_classes 表示类的数量. 这个矩阵的每一行表示真实类中的实例, 而每一列表示预测类中的实例 (Tensorflow 和 scikit-learn 采用的实现方式). 也可以是, 每一行表示预测类中的实例, 而每一列表示真实类中的实例 (Confusion matrix From Wikipedia 中的定义). 通过混淆矩阵, 可以很容易看出系统是否会弄混两个类, 这也是混淆矩阵名字的由来.

  混淆矩阵是一种特殊类型的列联表(contingency table)或交叉制表(cross tabulation or crosstab). 其有两维 (真实值 "actual" 和 预测值 "predicted" ), 这两维都具有相同的类("classes")的集合. 在列联表中, 每个维度和类的组合是一个变量. 列联表以表的形式, 可视化地表示多个变量的频率分布. 

 

使用混淆矩阵( scikit-learn 和 Tensorflow)

  下面先介绍在 scikit-learn 和 tensorflow 中计算混淆矩阵的 API (Application Programming Interface) 接口函数, 然后在一个示例中, 使用这两个 API 函数.

 

scikit-learn 混淆矩阵函数 sklearn.metrics.confusion_matrix API 接口

skearn.metrics.confusion_matrix(
    y_true,   # array, Gound true (correct) target values
    y_pred,  # array, Estimated targets as returned by a classifier
    labels=None,  # array, List of labels to index the matrix.
    sample_weight=None  # array-like of shape = [n_samples], Optional sample weights
)

在 scikit-learn 中, 计算混淆矩阵用来评估分类的准确度.

  按照定义, 混淆矩阵 C 中的元素 Ci,j 等于真实值为组 i , 而预测为组 j 的观测数(the number of observations). 所以对于二分类任务, 预测结果中, 正确的负例数(true negatives, TN)为 C0,0; 错误的负例数(false negatives, FN)为 C1,0; 真实的正例数为 C1,1; 错误的正例数为 C0,1.

  如果 labels 为 None, scikit-learn 会把在出现在 y_true 或 y_pred 中的所有值添加到标记列表 labels 中, 并排好序. 

 

Tensorflow 混淆矩阵函数 tf.confusion_matrix API 接口

tf.confusion_matrix(
    labels,   # 1-D Tensor of real labels for the classification task
    predictions,   # 1-D Tensor of predictions for a givenclassification
    num_classes=None,  #  The possible number of labels the classification task can have
    dtype=tf.int32,   # Data type of the confusion matrix 
    name=None,    # Scope name
    weights=None,    # An optional Tensor whose shape matches predictions
)

  Tensorflow tf.confusion_matrix 中的 num_classes 参数的含义, 与 scikit-learn sklearn.metrics.confusion_matrix 中的 labels 参数相近, 是与标记有关的参数, 表示类的总个数, 但没有列出具体的标记值. 在 Tensorflow 中一般是以整数作为标记, 如果标记为字符串等非整数类型, 则需先转为整数表示. 如果 num_classes 参数为 None, 则把 labels 和 predictions 中的最大值 + 1, 作为 num_classes 参数值.

  tf.confusion_matrix 的 weights 参数和 sklearn.metrics.confusion_matrix 的 sample_weight 参数的含义相同, 都是对预测值进行加权, 在此基础上, 计算混淆矩阵单元的值.

 

使用示例

#!/usr/bin/env python
# -*- coding: utf8 -*-
"""
Author: klchang
Description:
  A simple example for tf.confusion_matrix and sklearn.metrics.confusion_matrix.
Date: 2018.9.8
"""
from __future__ import print_function import tensorflow as tf import sklearn.metrics y_true = [1, 2, 4] y_pred = [2, 2, 4] # Build graph with tf.confusion_matrix operation sess = tf.InteractiveSession() op = tf.confusion_matrix(y_true, y_pred) op2 = tf.confusion_matrix(y_true, y_pred, num_classes=6, dtype=tf.float32, weights=tf.constant([0.3, 0.4, 0.3])) # Execute the graph print ("confusion matrix in tensorflow: ") print ("1. default: \n", op.eval()) print ("2. customed: \n", sess.run(op2)) # Use sklearn.metrics.confusion_matrix function print ("\nconfusion matrix in scikit-learn: ") print ("1. default: \n", sklearn.metrics.confusion_matrix(y_true, y_pred)) print ("2. customed: \n", sklearn.metrics.confusion_matrix(y_true, y_pred, labels=range(6), sample_weight=[0.3, 0.4, 0.3]))

 

参考资料

1. Confusion matrix. In Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/Confusion_matrix

2. Contingency table. In Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/Contingency_table

3. Tensorflow API - tf.confusion_matrix. https://www.tensorflow.com/api_docs/python/tf/confusion_matrix

4.  scikit-learn API - sklearn.metrics.confusion_matrix. http://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html

混淆矩阵(Confusion matrix)的原理及使用(scikit-learn 和 tensorflow)

标签:flow   接口   red   size   turn   大小   sub   tar   and   

原文地址:https://www.cnblogs.com/klchang/p/9608412.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!