标签:算法 arc sea bow proc pac ram learn using
Clustering
K-means:
基本思想是先随机选择要分类数目的点,然后找出距离这些点最近的training data 着色,距离哪个点近就算哪种类型,再对每种分类算出平均值,把中心点移动到平均值处,重复着色算平均值,直到分类成功.
One way to choose K is elbow method
Dimentionality Reduction: to save space of memory and speed up compute. 还有一个作用是可以用降维来visualize data.
降维最常用的算法PCA (Principal Component Analysis)
the 1st step of PCA algo is data preprocessing
PCA algo in matlab:
How to de-compress back from 100-dimentional to 1000-dimentional
How to choose the parameter K
Advice for using PCA. PCA is often used for data compresion and visualization. it is bad to use it to prevent overfitting.
ML- Unsupervised Learning, K-means, Dimentionality Reduction
标签:算法 arc sea bow proc pac ram learn using
原文地址:https://www.cnblogs.com/mashuai-191/p/9612791.html