标签:imu .com 结果 分享图片 先来 运算 现在 比较 简单的
我们先来看看这些指令的大致介绍,如果各位看过上一章的话,会发现这里的指令有的会有些眼熟,但是它们的作用却截然不同。以下是书中的一张概图。
第一个指令有些眼熟吧,它就是我们上一章当中的imul乘法指令的双字形式。不过可以看出,这里的imull指令已经完全变了味道,它将结果存入两个寄存器。接下来,我们来仔细看看这些指令。
这两个指令一看就是双胞胎,它们一个负责有符号全64位乘法,一个负责无符号全64位乘法。细心的猿友会发现,imull这个指令好像是负责乘法的指令,而且在之前的乘法并没有区分有符号和无符号,现在怎么又成双胞胎指令了。
我们上一章当中出现的指令是imul指令,当它操作双字的时候,也就是imull指令。不过不同的是,它的一般形式是imull S D,这里有两个操作数,它将计算S和D的乘积并截断为双字,然后存储在D当中。由于在截断时,无符号以及有符号的二进制序列是一样的,因此此处的乘法指令并不区分有符号和无符号。
本次我们讨论的imull指令,则与上面的普通乘法指令稍有不同,它只有一个操作数,也就是说,它的一般形式为imull S,这点在书中的表格中也能看出来,而另外一个操作数默认为%eax寄存器。最终的结果,会将高32位存入%edx寄存器,而低32位存入%eax寄存器。
试想一下,如果我们只取%eax寄存器当中的32位结果,那其实这里计算的结果就是S*%eax,此时imull S的作用就与imull S D是一样的,只是目的操作数被固定为%eax罢了。
接下来我们看一个简单的示例,我们去看下指令imull $0x3的结果,我们假设此时%eax寄存器的值为0x82345600。也就是我们需要计算0x3*0x82345600的值,这里LZ直接给出两者相乘的16进制表示,各位有兴趣的可以私下乘一下,为0xFFFF FFFE 869D 0200。这个结果为64位的,因此我们寄存器的前后状态如下所示。
可以看到,%eax保存着低32位的结果,单说这32位的话,它的有符号数值为-2036530688,正是我们直接计算0x3*0x82345600的32位截断后的有符号值,显然这个结果溢出了。如果组合上高32位,则结果为-6331497984,将它加上或者取模4294967296(2的32次方)将得到我们32位的结果。这里的有符号乘法采取的是先符号扩展被乘数,然后两者相乘,将结果再截断为64位所得。
对于mull的单操作数指令来讲,就比较简单了,它采用的是无符号乘法,因此就和我们平时的十进制乘法运算类似,只是同样的,它也会将结果的高32位存入%edx,将低32位存入%eax。
这个指令相对来说就非常简单了,它就是简单的将%eax寄存器的值符号扩展32位到%edx寄存器,也就是说,如果%eax寄存器的二进制序列的最高位为0,则cltd指令将把%edx置为32个0,相反,如果%eax寄存器的二进制序列最高位为1,则cltd指令将会自从填充%edx寄存器为32个1。
这两个指令与前面的imull以及mull类似,它也将计算结果存放在两个寄存器当中,其中余数存放在%edx寄存器,商存放在%eax寄存器。如果各位理解了前面的imull以及mull,那么这里idivl和divl理解起来会非常简单。
这里LZ举一个简单的例子,考虑指令idivl $0x3的结果,我们假设此时%eax寄存器的值为0x82345600。也就是我们需要计算0x82345600/0x3的值,这里LZ直接给出两者相除的16进制表示,各位有兴趣的也可以私下除一下,商为0xD6117200,余数为0x0。因此我们寄存器的前后状态如下所示。
可以看到,在idivl这个指令执行的过程中,其实对被除数进行了符号扩展,类似于cltd指令,或者有时也会将%eax移动到%edx,然后对%edx进行算术右移31位的运算。这两种方式的结果是一样的,都是将%eax符号扩展32位并存储在%edx当中。
转自:
作者:zuoxiaolong(左潇龙)
出处:博客园左潇龙的技术博客--http://www.cnblogs.com/zuoxiaolong
标签:imu .com 结果 分享图片 先来 运算 现在 比较 简单的
原文地址:https://www.cnblogs.com/zzdbullet/p/9625566.html