标签:运行 ges 通过 label tps 含义 batch 权重 for
https://blog.csdn.net/lanchunhui/article/details/61712830
https://www.cnblogs.com/silence-tommy/p/7029561.html
二者的主要区别在于:
tf.Variable:主要在于一些可训练变量(trainable variables),比如模型的权重(weights,W)或者偏执值(bias);
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
stddev=1./math.sqrt(float(IMAGE_PIXELS)), name=‘weights‘)
)
biases = tf.Variable(tf.zeros([hidden1_units]), name=‘biases‘)
tf.placeholder:用于得到传递进来的真实的训练样本:
images_placeholder = tf.placeholder(tf.float32, shape=[batch_size, IMAGE_PIXELS])
labels_placeholder = tf.placeholder(tf.int32, shape=[batch_size])
如下则是二者真实的使用场景:
for step in range(FLAGS.max_steps):
feed_dict = {
images_placeholder = images_feed,
labels_placeholder = labels_feed
}
_, loss_value = sess.run([train_op, loss], feed_dict=feed_dict)
当执行这些操作时,tf.Variable 的值将会改变,也即被修改,这也是其名称的来源(variable,变量)。
What’s the difference between tf.placeholder and tf.Variable
TensorFlow 辨异 —— tf.placeholder 与 tf.Variable
标签:运行 ges 通过 label tps 含义 batch 权重 for
原文地址:https://www.cnblogs.com/zkwarrior/p/9626745.html