标签:== set turn 方式 product return 取绝对值 绝对值 freopen
很明显的区间K覆盖模型,用费用流求解.只是这题N可达1e5,需要将点离散化.
建模方式步骤:
1.对权值为w的区间[u,v],加边id(u)->id(v+1),容量为1,费用为-w;
2.对所有相邻的点加边id(i)->id(i+1),容量为正无穷,费用为0;
3.建立源点汇点,由源点s向最左侧的点加边,容量为K,费用为0,由最右侧的点向汇点加边,容量为K,费用为0
4.跑出最大流后,最小费用取绝对值就是能获得的最大权
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1000;
const int MAXM = 100000;
const int INF = 0x3f3f3f3f;
struct Edge{
int to, next, cap, flow, cost;
} edge[MAXM];
int head[MAXN], tol;
int pre[MAXN], dis[MAXN];
bool vis[MAXN];
int N;
void init(int n)
{
N = n;
tol = 0;
memset(head, -1, sizeof(head));
}
void addedge(int u, int v, int cap, int cost)
{
edge[tol].to = v;
edge[tol].cap = cap;
edge[tol].cost = cost;
edge[tol].flow = 0;
edge[tol].next = head[u];
head[u] = tol++;
edge[tol].to = u;
edge[tol].cap = 0;
edge[tol].cost = -cost;
edge[tol].flow = 0;
edge[tol].next = head[v];
head[v] = tol++;
}
bool spfa(int s, int t){
queue<int> q;
for (int i = 0; i < N; i++){
dis[i] = INF;
vis[i] = false;
pre[i] = -1;
}
dis[s] = 0;
vis[s] = true;
q.push(s);
while (!q.empty()){
int u = q.front();
q.pop();
vis[u] = false;
for (int i = head[u]; i != -1; i = edge[i].next){
int v = edge[i].to;
if (edge[i].cap > edge[i].flow && dis[v] > dis[u] + edge[i].cost){
dis[v] = dis[u] + edge[i].cost;
pre[v] = i;
if (!vis[v]){
vis[v] = true;
q.push(v);
}
}
}
}
if (pre[t] == -1) return false;
else return true;
}
int minCostMaxflow(int s, int t, int &cost){
int flow = 0;
cost = 0;
while (spfa(s, t)){
int Min = INF;
for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to]){
if (Min > edge[i].cap - edge[i].flow)
Min = edge[i].cap - edge[i].flow;
}
for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to]){
edge[i].flow += Min;
edge[i ^ 1].flow -= Min;
cost += edge[i].cost * Min;
}
flow += Min;
}
return flow;
}
map<int,int> dp;
struct edg{
int u,v,w;
}ed[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int T,N,M,K,u,v,w;
scanf("%d",&T);
map<int,int> ::iterator it;
while(T--){
dp.clear();
scanf("%d %d %d",&N, &K, &M);
for(int i=1;i<=M;++i){
scanf("%d %d %d",&u,&v,&w);
v++;
ed[i] = (edg){u,v,w};
dp[u] = dp[v] = 1;
}
int cnt=0;
for(it = dp.begin();it!=dp.end();++it){
int id = it->first;
dp[id] = ++cnt;
}
init(cnt+5);
int s = 0,t = cnt+1;
addedge(s,1,K,0);
addedge(cnt,t,K,0);
for(int i=1;i<cnt;++i){
addedge(i,i+1,INF,0);
}
for(int i=1;i<=M;++i){
u = ed[i].u, v = ed[i].v;
u = dp[u], v =dp[v];
addedge(u,v,1,-ed[i].w);
}
int cost;
minCostMaxflow(s,t,cost);
printf("%d\n",-cost);
}
return 0;
}
ACM-ICPC 2018 焦作赛区网络预赛 F. Modular Production Line (区间K覆盖-最小费用流)
标签:== set turn 方式 product return 取绝对值 绝对值 freopen
原文地址:https://www.cnblogs.com/xiuwenli/p/9651790.html