标签:style blog class c ext color
$\bf命题:$设$\int_a^{ + \infty } {f\left( x \right)dx} $收敛,若$\lim \limits_{x \to \begin{array}{*{20}{c}} {{\rm{ + }}\infty } \end{array}
$\bf命题:$设$f\left( x \right) \in {C^1}\left[ {a, + \infty } \right)$,若$\int_a^{ + \infty } {f\left( x \right)dx} ,\int_a^{ + \infty } {f‘\left( x \right)dx}$均收敛,则$\lim \limits_{x \to \begin{array}{*{20}{c}}{ + \infty }\end{array}
$\bf命题:$设${f\left( x \right)}$在$\left[ {a,{\rm{ + }}\infty } \right)$单调,且$\int_a^{ + \infty } {f\left( x \right)dx} $收敛,则$\lim \limits_{x \to \begin{array}{*{20}{c}}{ + \infty }\end{array}
$\bf命题:$设${f\left( x \right)}$在$\left[ {a, + \infty } \right)$上可微且单调下降,若$\int_a^{ + \infty } {f\left( x \right)dx} $收敛,则$\int_a^{ + \infty } {xf‘\left( x \right)dx} $收敛
$\bf命题:$设$\int_a^{ + \infty } {f\left( x \right)dx} $收敛,且$\frac{{f\left( x \right)}}{x}$在${\left[ {a, + \infty } \right)}$上单调递减,则$\lim \limits_{x \to \begin{array}{*{20}{c}} { + \infty } \end{array}
$\bf命题:$设$f\left( x \right)$单调且$\lim \limits_{x \to \begin{array}{*{20}{c}} {{0^ + }} \end{array}
$\bf命题:$设$xf\left( x \right)$在${\left[ {a, + \infty } \right)}$上单调递减,若$\int_a^{ + \infty } {f\left( x \right)dx} $收敛,则$\lim \limits_{x \to \begin{array}{*{20}{c}} { + \infty } \end{array}
$\bf命题:$设$f\left( x \right)$在${\left[ {a, + \infty } \right)}$上一致连续,若$\int_a^{ + \infty } {f\left( x \right)dx} $收敛,则$\lim \limits_{x \to \begin{array}{*{20}{c}}{ + \infty }\end{array}
$\bf命题:$设$f\left( x \right)$在${\left[ {a, + \infty } \right)}$上可导且导函数有界,若$\int_a^{ + \infty } {f\left( x \right)dx} $收敛,则$\lim \limits_{x \to \begin{array}{*{20}{c}} { + \infty } \end{array}
$\bf命题:$设$f\left( x \right)$在${\left[ {a, + \infty } \right)}$上可导且导函数有界,若$\int_a^{ + \infty } {f\left( x \right)dx} $绝对收敛,则$\lim \limits_{x \to \begin{array}{*{20}{c}} { + \infty } \end{array}
$\bf命题:$设$f\left( x \right)$在${\left[ {a, + \infty } \right)}$上可导且导函数有界,若$ \int_a^{ + \infty } {{f^2}\left( x \right)dx} < + \infty $,则$\lim \limits_{x \to \begin{array}{*{20}{c}} { + \infty } \end{array}
$\bf命题:$设$p \ge 1,f\left( x \right) \in {C^1}\left( { - \infty , + \infty } \right)$,且\int_{ - \infty }^{ + \infty } {{{\left| {f\left( x \right)} \right|}^p}dx} < + \infty ,\int_{ - \infty }^{ + \infty } {{{\left| {f‘\left( x \right)} \right|}^p}dx} < + \infty
$\bf命题:$设$f\left( x \right) \in C\left[ {a, + \infty } \right)$,且$\int_a^{ + \infty } {f\left( x \right)dx} $收敛,则存在数列$\left\{ {{x_n}} \right\} \subset \left[ {a, + \infty } \right)$,使得\mathop {\lim }\limits_{n \to\infty } {x_n} = + \infty ,\mathop {\lim }\limits_{n \to \infty } f\left( {{x_n}} \right) = 0
$\bf命题:$设$\int_a^{{\rm{ + }}\infty } {f\left( x \right)dx} $绝对收敛,且$\lim \limits_{x \to \begin{array}{*{20}{c}}{{\rm{ + }}\infty }\end{array}
$\bf命题:$设$f\left( x \right)$在$\left[ {0, + \infty } \right)$上可微,$f‘\left( x \right)$在$\left[ {0, + \infty } \right)$上单调递增且无上界,则$\int_0^{ + \infty } {\frac{1}{{1 + {f^2}\left( x \right)}}dx} $收敛
$\bf命题:$设正值函数$f\left( x \right)$在$\left[ {1, + \infty } \right)$上二阶连续可微,且$\lim \limits_{x \to \begin{array}{*{20}{c}}{ + \infty }\end{array}
$\bf命题:$
标签:style blog class c ext color
原文地址:http://www.cnblogs.com/ly142857/p/3664523.html