码迷,mamicode.com
首页 > 其他好文 > 详细

0-1 背包问题

时间:2018-09-20 00:56:57      阅读:195      评论:0      收藏:0      [点我收藏+]

标签:获得   mes   部分   include   0-1背包问题   i++   解释   turn   name   

转自https://blog.csdn.net/xp731574722/article/details/70766804

0-1 背包问题:给定 n 种物品和一个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi 。

问:应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大?

 

分析一波,面对每个物品,我们只有选择拿取或者不拿两种选择,不能选择装入某物品的一部分,也不能装入同一物品多次。

 

解决办法:声明一个 大小为  m[n][c] 的二维数组,m[ i ][ j ] 表示 在面对第 i 件物品,且背包容量为  j 时所能获得的最大价值 ,那么我们可以很容易分析得出 m[i][j] 的计算方法,

(1). j < w[i] 的情况,这时候背包容量不足以放下第 i 件物品,只能选择不拿

m[ i ][ j ] = m[ i-1 ][ j ]

(2). j>=w[i] 的情况,这时背包容量可以放下第 i 件物品,我们就要考虑拿这件物品是否能获取更大的价值。

如果拿取,m[ i ][ j ]=m[ i-1 ][ j-w[ i ] ] + v[ i ]。 这里的m[ i-1 ][ j-w[ i ] ]指的就是考虑了i-1件物品,背包容量为j-w[i]时的最大价值,也是相当于为第i件物品腾出了w[i]的空间。

如果不拿,m[ i ][ j ] = m[ i-1 ][ j ] , 同(1)

究竟是拿还是不拿,自然是比较这两种情况那种价值最大。

 

由此可以得到状态转移方程:

 

if(j>=w[i])
m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);
else
m[i][j]=m[i-1][j];

 

 

例:0-1背包问题。在使用动态规划算法求解0-1背包问题时,使用二维数组m[i][j]存储背包剩余容量为j,可选物品为i、i+1、……、n时0-1背包问题的最优值。绘制

价值数组v = {8, 10, 6, 3, 7, 2},

重量数组w = {4, 6, 2, 2, 5, 1},

背包容量C = 12时对应的m[i][j]数组。

0 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 0 8 8 8 8 8 8 8 8 8
2 0 0 0 8 8 10 10 10 10 18 18 18
3 0 6 6 8 8 14 14 16 16 18 18 24
4 0 6 6 9 9 14 14 17 17 19 19 24
5 0 6 6 9 9 14 14 17 17 19 21 24
6 2 6 8 9 11 14 16 17 19 19 21 24

(第一行和第一列为序号,其数值为0)
如m[2][6],在面对第二件物品,背包容量为6时我们可以选择不拿,那么获得价值仅为第一件物品的价值8,如果拿,就要把第一件物品拿出来,放第二件物品,价值10,那我们当然是选择拿。m[2][6]=m[1][0]+10=0+10=10;依次类推,得到m[6][12]就是考虑所有物品,背包容量为C时的最大价值。

 

#include <iostream>
#include <cstring>
using namespace std;


const int N=15;


int main()
{
    int v[N]={0,8,10,6,3,7,2};
    int w[N]={0,4,6,2,2,5,1};


    int m[N][N];
    int n=6,c=12;
    memset(m,0,sizeof(m));
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=c;j++)
        {
            if(j>=w[i])
                m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);


            else
                m[i][j]=m[i-1][j];
        }
    }


    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=c;j++)
        {
            cout<<m[i][j]<<‘ ‘;
        }
        cout<<endl;
    }


    return 0;
}

 

 

到这一步,可以确定的是可能获得的最大价值,但是我们并不清楚具体选择哪几样物品能获得最大价值。

另起一个 x[ ] 数组,x[i]=0表示不拿,x[i]=1表示拿。

m[n][c]为最优值,如果m[n][c]=m[n-1][c] ,说明有没有第n件物品都一样,则x[n]=0 ; 否则 x[n]=1。当x[n]=0时,由x[n-1][c]继续构造最优解;当x[n]=1时,则由x[n-1][c-w[i]]继续构造最优解。以此类推,可构造出所有的最优解。(这段全抄算法书,实在不知道咋解释啊。。)

 

void traceback()
{
for(int i=n;i>1;i--)
{
if(m[i][c]==m[i-1][c])
x[i]=0;
else
{
x[i]=1;
c-=w[i];
}
}
x[1]=(m[1][c]>0)?1:0;
}


例:

 

某工厂预计明年有A、B、C、D四个新建项目,每个项目的投资额Wk及其投资后的收益Vk如下表所示,投资总额为30万元,如何选择项目才能使总收益最大?

 

Project

Wk

Vk

A

15

12

B

10

8

C

12

9

D

8

5

结合前面两段代码

 

#include <iostream>
#include <cstring>
using namespace std;

const int N=150;

int v[N]={0,12,8,9,5};
int w[N]={0,15,10,12,8};
int x[N];
int m[N][N];
int c=30;
int n=4;
void traceback()
{
for(int i=n;i>1;i--)
{
if(m[i][c]==m[i-1][c])
x[i]=0;
else
{
x[i]=1;
c-=w[i];
}
}
x[1]=(m[1][c]>0)?1:0;
}

int main()
{


memset(m,0,sizeof(m));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=c;j++)
{
if(j>=w[i])
m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);

else
m[i][j]=m[i-1][j];
}
}/*
for(int i=1;i<=6;i++)
{
for(int j=1;j<=c;j++)
{
cout<<m[i][j]<<‘ ‘;
}
cout<<endl;
}
*/
traceback();
for(int i=1;i<=n;i++)
cout<<x[i];
return 0;
}

 

 

输出x[i]数组:0111,输出m[4][30]:22。

得出结论:选择BCD三个项目总收益最大,为22万元。

 

 

不过这种算法只能得到一种最优解,并不能得出所有的最优解。

0-1 背包问题

标签:获得   mes   部分   include   0-1背包问题   i++   解释   turn   name   

原文地址:https://www.cnblogs.com/jing-yu/p/9678299.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!