标签:blank ... body 第一个 hello 时间复杂度 rip 执行 等于
本篇文章参考:https://www.jianshu.com/p/f4cca5ce055a
我们假设计算机运行一行基础代码需要执行一次运算。
1 int aFunc(void) {
2 printf("Hello, World!\n"); // 需要执行 1 次
3 return 0; // 需要执行 1 次
4 }
那么上面这个方法需要执行 2 次运算
1 int aFunc(int n) {
2 for(int i = 0; i<n; i++) { // 需要执行 (n + 1) 次
3 printf("Hello, World!\n"); // 需要执行 n 次
4 }
5 return 0; // 需要执行 1 次
6 }
这个方法需要 (n + 1 + n + 1) = 2n + 2 次运算。
我们把 算法需要执行的运算次数 用 输入大小n 的函数 表示,即 T(n) 。
即T(n)可以看做是一个关于n(n不是程序运行的次数)的函数。
定义: 存在常数 c,使得当 N >= c 时 T(N) <= f(N),表示为 T(n) = O(f(n)) 。
如图:
当 N >= 2 的时候,f(n) = n^2 总是大于 T(n) = n + 2 的,于是我们说 f(n) 的增长速度是大于或者等于 T(n) 的,也说 f(n) 是 T(n) 的上界,可以表示为 T(n) = O(f(n))。
因为f(n) 的增长速度是大于或者等于 T(n) 的,即T(n) = O(f(n)),所以我们可以用 f(n) 的增长速度来度量 T(n) 的增长速度,所以我们说这个算法的时间复杂度是 O(f(n))。
此时为了 估算算法需要的运行时间 和 简化算法分析,我们引入时间复杂度的概念。
算法的时间复杂度,用来度量算法的运行时间,记作: T(n) = O(f(n))。它表示随着 输入大小n 的增大,算法执行需要的时间的增长速度可以用 f(n) 来描述。
那么当我们拿到算法的执行次数函数 T(n) 之后怎么得到算法的时间复杂度呢?
比如
第一个 Hello, World 的例子中 T(n) = 2,所以我们说那个函数(算法)的时间复杂度为 O(1)。
T(n) = n + 29,此时时间复杂度为 O(n)。
比如
T(n) = n^3 + n^2 + 29,此时时间复杂度为 O(n^3)。
比如
T(n) = 3n^3,此时时间复杂度为 O(n^3)。
综合起来:如果一个算法的执行次数是 T(n),那么只保留最高次项,同时忽略最高项的系数后得到函数 f(n),此时算法的时间复杂度就是 O(f(n))。为了方便描述,下文称此为 大O推导法
void aFunc(int n) {
for(int i = 0; i < n; i++) { // 循环次数为 n
printf("Hello, World!\n"); // 循环体时间复杂度为 O(1)
}
}
此时时间复杂度为 O(n × 1),即 O(n)。
void aFunc(int n) {
for(int i = 0; i < n; i++) { // 循环次数为 n
for(int j = 0; j < n; j++) { // 循环次数为 n
printf("Hello, World!\n"); // 循环体时间复杂度为 O(1)
}
}
}
此时时间复杂度为 O(n × n × 1),即 O(n^2)。
void aFunc(int n) {
// 第一部分时间复杂度为 O(n^2)
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
printf("Hello, World!\n");
}
}
// 第二部分时间复杂度为 O(n)
for(int j = 0; j < n; j++) {
printf("Hello, World!\n");
}
}
此时时间复杂度为 max(O(n^2), O(n)),即 O(n^2)。
void aFunc(int n) {
if (n >= 0) {
// 第一条路径时间复杂度为 O(n^2)
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
printf("输入数据大于等于零\n");
}
}
} else {
// 第二条路径时间复杂度为 O(n)
for(int j = 0; j < n; j++) {
printf("输入数据小于零\n");
}
}
}
此时时间复杂度为 max(O(n^2), O(n)),即 O(n^2)。
常见的时间复杂度:
执行次数函数 | 阶 | 术语描述 |
12 | O(1) | 常数阶 |
2n+3 | O(n) | 线性阶 |
3n2+2n+1 | O(n2) | 平方阶 |
5log2n+20 | O(log2n) | 对数阶 |
2n+3nlog2n+19 | O(nlogn) | nlog2n阶 |
6n3+2n2+3n+4 | O(n3) | 立方阶 |
2n | O(2n) | 指数阶 |
时间复杂度所耗费的时间是:
O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) <O(2n) < O(n!) <O(nn)
标签:blank ... body 第一个 hello 时间复杂度 rip 执行 等于
原文地址:https://www.cnblogs.com/xiaocao123/p/9680173.html