标签:property app black 冗余 std local long erb factory
1、UpdateStateByKey、windows等有状态的操作时,自动进行checkpoint,必须设置checkpoint目录,数据保留一份在容错的文件系统中,一旦内存中的数据丢失,可以从文件系统中读取数据,不需要重新计算。
SparkStreaming.checkpoint("hdfs://ip:port/checkpoint")
2、Driver高可用性(Java版)
第一次在创建和启动StreamingContext的时候,那么将持续不断的产生实时计算的元数据并写入检查点,如果driver节点挂掉,那么可以让Spark集群自动重启集群(必须使用yarn cluster模式,spark-submit --deploy-mode cluster --supervise ....),然后继续运行计算程序,没有数据丢失。
private static void testDriverHA() {
final Streaming checkpointDir="hdfs://ip:port/checkpoint";
JavaStreamingContextFactory contextFactory = new JavaStreamingContextFactory() {
@Override
public JavaStreamingContext create() {
SparkConf conf = new SparkConf()
.setMaster("local[2]")
.setAppName("AdClickRealTimeStatSpark");
JavaStreamingContext jssc = new JavaStreamingContext(
conf, Durations.seconds(5));
jssc.checkpoint(checkpointDir);
Map<String, String> kafkaParams = new HashMap<String, String>();
kafkaParams.put(Constants.KAFKA_METADATA_BROKER_LIST,
ConfigurationManager.getProperty(Constants.KAFKA_METADATA_BROKER_LIST));
String kafkaTopics = ConfigurationManager.getProperty(Constants.KAFKA_TOPICS);
String[] kafkaTopicsSplited = kafkaTopics.split(",");
Set<String> topics = new HashSet<String>();
for(String kafkaTopic : kafkaTopicsSplited) {
topics.add(kafkaTopic);
}
JavaPairInputDStream<String, String> adRealTimeLogDStream = KafkaUtils.createDirectStream(
jssc,
String.class,
String.class,
StringDecoder.class,
StringDecoder.class,
kafkaParams,
topics);
JavaPairDStream<String, String> filteredAdRealTimeLogDStream =
filterByBlacklist(adRealTimeLogDStream);
generateDynamicBlacklist(filteredAdRealTimeLogDStream);
JavaPairDStream<String, Long> adRealTimeStatDStream = calculateRealTimeStat(
filteredAdRealTimeLogDStream);
calculateProvinceTop3Ad(adRealTimeStatDStream);
calculateAdClickCountByWindow(adRealTimeLogDStream);
return jssc;
}
};
JavaStreamingContext context = JavaStreamingContext.getOrCreate(
checkpointDir, contextFactory);
context.start();
context.awaitTermination();
}
3、实现RDD高可用性,启动WAL预写日志机制
sparkStreaming从原理上说,是通过receiver来进行数据接收的,接收到时的数据,会被划分成一个个的block,block会被组合成batch,针对一个batch,会创建一个Rdd,启动一个job来执行定义的算子操作。receiver主要接收到数据,那么就会立即将数据写入一份到时容错文件系统(比如hdfs)上的checkpoint目录中的,一份磁盘文件中去,作为数据的冗余副本。
SparkConf conf = new SparkConf()
.setMaster("local[2]")
.setAppName("AdClickRealTimeStatSpark")
.set("spark.streaming.receiver.writeAheadLog.enable","true");
标签:property app black 冗余 std local long erb factory
原文地址:https://www.cnblogs.com/runnerjack/p/9684027.html