码迷,mamicode.com
首页 > 其他好文 > 详细

可重复选择的组合

时间:2018-09-21 13:36:16      阅读:166      评论:0      收藏:0      [点我收藏+]

标签:方法   进一步   总数   问题   分析   多次   col   数字   个数   

题意

有n个不同元素,每个元素可以选择多次,一共选k个元素,有多少种方法?

分析

设第i个数选xi个,那么x1+x2+…+xn=k,转化成求解该n元一次方程的非负整数解的个数,又设yi=xi+1,那么y1+y2+…+yn=k+n,转化成求解该n元一次方程的正整数解的个数,我们可以进一步转化问题,可以看做k+n个数字1排列成一排,分成n份,即选法总数是C(k+n-1,n-1)=C(k+n-1,k)。这里用到了隔板法的思想。

solution:

C(k+n-1,n-1)=C(n+k-1,k);

可重复选择的组合

标签:方法   进一步   总数   问题   分析   多次   col   数字   个数   

原文地址:https://www.cnblogs.com/klaycf/p/9685933.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!