幂等阵
$\bf命题:$设$n$阶幂等阵$A$满足$A=A_{1}+\cdots+A_{s}$,且$$r(A)=r(A_{1})+\cdots+r(A_{s})$$
证明:所有的$A_{i}$都相似于一个对角阵,且$A_{i}$的特征值之和等于$A_{i}$的秩
$\bf命题:$
幂幺阵
$\bf命题:$设$A$为$n$阶对合阵,即${A^2} = E$,则存在正交阵$Q$,使得${Q^{ - 1}}AQ = \left( {\begin{array}{*{20}{c}}{{E_r}}&0 \\ 0&{ - {E_{n - r}}}\end{array}} \right)$
$\bf命题:$设${A^n} = {E_m}$,则$(E-A)x=0$的解空间的维数为$\frac{1}{n}tr\left( {A + {A^2} + \cdots + {A^n}} \right)$
1
$\bf命题:$
附录1(幂等阵)
$\bf定义:$设$A$为$n$阶矩阵,若${A^2} = A$,则称$A$为幂等阵
$\bf命题1:$若$A$为幂等阵,则${A^T},{A^k},E - A$均为幂等阵
$\bf命题2:$幂等阵的特征值与行列式只能是$0$或$1$
$\bf命题3:$设$A$是特征值全为$0$或$1$的方阵,则$A$为幂等阵的充要条件是$A$可对角化
$\bf命题4:$$A$为幂等阵当且仅当$r\left( A \right) + r\left( {E - A} \right) = n$
$\bf命题5:$$A$为幂等阵当且仅当${F^n} = N\left( A \right) \oplus N\left( {E - A} \right)$
$\bf命题6:$$A$为幂等阵当且仅当存在可逆阵$P$,使得${P^{ - 1}}AP = \left( {\begin{array}{*{20}{c}}{{E_r}}&0\\0&0\end{array}} \right),r = r\left( A \right)$
$\bf命题7:$设$A$为秩为$r$的幂等阵,则$tr\left( A \right) = r\left( A \right)$
$\bf命题8:$设$A$为秩为$r$的幂等阵,则$\left| {aE + bA} \right| = {\left( {a + b} \right)^r}{a^{n - r}}$
$\bf命题9:$任意幂等阵均可分解为对称阵与正定阵之积
原文地址:http://www.cnblogs.com/ly142857/p/3725519.html