标签:过程 精度 eal abs 一个 联系 challenge ural person
我们提出了一种方法去在一张图片中有效地识别多个人体的2D姿势。这个方法使用了一个无参数表示法,我们将其叫为Part Affinity Fields(PAFs),其是去在图片中根据个体识别身体各部分的联合。这个架构编码了全体信息,并且允许一个贪婪的从底向上的解析步骤,这在实现实时性能的时候有着高度的精度而无须考虑图像中个体的数量。这个架构被设计成使用了两个分支的相同序列预测过程,从而来联合学习部分定位以及他们的联系。我们的方法在the inaugural COCO 2016 keypoints challenge中首次提出,并且不管在性能还是有效性上都超过了之前在MPII Multi-Person基准上的最佳方法。
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields(翻译)
标签:过程 精度 eal abs 一个 联系 challenge ural person
原文地址:https://www.cnblogs.com/CZiFan/p/9690094.html