标签:sed mat span poi ios class math ORC for
又到了摸鱼的时候了23333
A. Little C Loves 3 I
题意:给一个数,分解为不被3整除的3个数
题解:构造,如果这个数被3整除,就构造为1,1,n-2;否则构造为1,2,n-3
1 class Solution(object): 2 def run(self): 3 n = int(input()) 4 if n % 3 == 0: 5 print(1, 1, n - 2) 6 else: 7 print(1, 2, n - 3) 8 9 if __name__ == ‘__main__‘: 10 Solution().run()
B. Cover Points
题意:用一个直角边为xy轴的等腰三角形覆盖坐标系上的点,问直角边长度
题解:不是等腰还有点意思,等腰就是大水题
1 class Solution(object): 2 def run(self): 3 n = int(input()) 4 res = 0 5 for _ in range(n): 6 p = [int(x) for x in input().split(‘ ‘)] 7 x, y = p[0], p[1] 8 res = max(res, x + y) 9 print(res) 10 11 if __name__ == ‘__main__‘: 12 Solution().run()
C. Enlarge GCD
题意:从n个数中去掉x个,使GCD严格增大,求x的最小值
题解:将所有数的因子计数,记做cnt[],cnt[k] 表示有因子 k 的数的个数;很显然,当 k0 为所有数的gcd时,cnt[k0] 应该为 n;不难想出,留下的数的个数应该为 cnt[] 中第二大的那一个,Sure,第一大的是 cnt[k0] = n
Python读入就超时了 TvT
1 #include <iostream> 2 #include <vector> 3 #include <cmath> 4 5 std::vector<int> a((int)3e5+1), cnt((int)2e7); 6 7 int main() 8 { 9 int n, mx = -1, mxx = -1; 10 std::cin >> n; 11 for (auto i = 0; i < n; i++) 12 { 13 std::cin >> a[i]; 14 mxx = std::fmax(mxx, a[i]); 15 for (auto j = 1; j * j <= a[i] && n * j < (int)1.5e7 + 1; j++) 16 if (a[i] % j == 0) 17 { 18 cnt[j]++; 19 if (j * j != a[i]) 20 cnt[a[i] / j]++; 21 } 22 } 23 for (auto i = 2; i <= mxx; i++) 24 if (cnt[i] < n) 25 mx = std::fmax(mx, cnt[i]); 26 if (mx > 0) 27 std::cout << n - mx << std::endl; 28 else 29 std::cout << -1 << std::endl; 30 return 0; 31 }
D. Little C Loves 3 II
题意:在一个n*m的棋盘里,尽可能多地放入曼哈顿距离为3的棋子对,问最多能放几个棋子
题解:分类讨论,然后总结一下,这题相当水
1 class Solution(object): 2 def run(self): 3 n, m = [int(x) for x in input().split()] 4 if n > m: 5 n, m = m, n 6 res = (n * m) // 2 7 if n == 1 and (m + 1) % 6 // 3: 8 res -= 1 9 elif n == 2: 10 if m == 2: 11 res = 0 12 elif m == 3: 13 res = 2 14 elif m == 7: 15 res = 6 16 print(res * 2) 17 18 if __name__ == ‘__main__‘: 19 Solution().run()
E
摸了
Codeforces Round #511 (Div. 2)
标签:sed mat span poi ios class math ORC for
原文地址:https://www.cnblogs.com/hexsix/p/9690399.html