码迷,mamicode.com
首页 > 其他好文 > 详细

[BJOI2012]最多的方案(记忆化搜索)

时间:2018-09-23 22:33:32      阅读:227      评论:0      收藏:0      [点我收藏+]

标签:优化   include   fine   复杂度   效率   下界   lld   ios   space   

第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数。现在给一个正整数N,它可以写成一些斐波那契数的和的形式。如果我们要求不同的方案中不能有相同的斐波那契数,那么对一个N最多可以写出多少种方案呢?

题意是说数列中不能出现相同的数。

显然要记忆化搜索。

直接搜会T,我们枚举下一个数填什么是要从大到小枚举,可以使效率有指数级的提升。

这是枚举上界,枚举下界可以用前缀和+二分来优化枚举复杂度。

加了这两个优化后代码跑的飞快。

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<map>
#define mm make_pair
using namespace std;
typedef long long ll;
ll dp[100],sum[100];
map<pair<ll,int>,ll>mem;
ll n;
ll dfs(ll x,int xian){
    if(!x)return 1;
    if(mem[mm(x,xian)])return mem[mm(x,xian)];
    ll ans=0;
    int p=lower_bound(sum+1,sum+87+1,x)-sum;
    for(int i=p;i<=xian;++i)if(dp[i]<=x)ans+=dfs(x-dp[i],i-1);else break;
    return mem[mm(x,xian)]=ans;
}
int main(){
    scanf("%lld",&n);dp[0]=dp[1]=1;
    for(int i=2;i<=87;++i)dp[i]=dp[i-1]+dp[i-2];
    for(int i=1;i<=87;++i)sum[i]=sum[i-1]+dp[i];
    printf("%lld",dfs(n,87));
    return 0;
} 

 

[BJOI2012]最多的方案(记忆化搜索)

标签:优化   include   fine   复杂度   效率   下界   lld   ios   space   

原文地址:https://www.cnblogs.com/ZH-comld/p/9693575.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!