标签:related guid art analysis mode int documents led ide
可以看到支持的数据源:同数据类型的table(matrix),不同类型的table,以及从DB文件取数据、数据序列化、压缩等。
在这些定制的数据源上,Intel DAAL使用自己底层的CPU进行硬件加速!下面摘自其官方:
Intel DAAL is developed by the same team as the Intel? Math Kernel Library (Intel? MKL)—the leading math library in the world. This team works closely with Intel? processor architects to squeeze performance from Intel processor-based systems.
Processors | Intel Atom?, Intel Core?, Intel? Xeon?, and Intel? Xeon Phi? processors and compatible processors |
Languages | Python*, C++, Java* |
Development Tools and Environments |
Microsoft Visual Studio* (Windows*) Eclipse* and CDT* (Linux*) |
Operating Systems | Use the same API for application development on multiple operating systems: Windows, Linux, and macOS* |
# file: low_order_moms_dense_batch.py #=============================================================================== # Copyright 2014-2018 Intel Corporation. # # This software and the related documents are Intel copyrighted materials, and # your use of them is governed by the express license under which they were # provided to you (License). Unless the License provides otherwise, you may not # use, modify, copy, publish, distribute, disclose or transmit this software or # the related documents without Intel‘s prior written permission. # # This software and the related documents are provided as is, with no express # or implied warranties, other than those that are expressly stated in the # License. #=============================================================================== ## <a name="DAAL-EXAMPLE-PY-LOW_ORDER_MOMENTS_DENSE_BATCH"></a> ## \example low_order_moms_dense_batch.py import os import sys from daal.algorithms import low_order_moments from daal.data_management import FileDataSource, DataSourceIface utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__)))) if utils_folder not in sys.path: sys.path.insert(0, utils_folder) from utils import printNumericTable DAAL_PREFIX = os.path.join(‘..‘, ‘data‘) # Input data set parameters dataFileName = os.path.join(DAAL_PREFIX, ‘batch‘, ‘covcormoments_dense.csv‘) def printResults(res): printNumericTable(res.get(low_order_moments.minimum), "Minimum:") printNumericTable(res.get(low_order_moments.maximum), "Maximum:") printNumericTable(res.get(low_order_moments.sum), "Sum:") printNumericTable(res.get(low_order_moments.sumSquares), "Sum of squares:") printNumericTable(res.get(low_order_moments.sumSquaresCentered), "Sum of squared difference from the means:") printNumericTable(res.get(low_order_moments.mean), "Mean:") printNumericTable(res.get(low_order_moments.secondOrderRawMoment), "Second order raw moment:") printNumericTable(res.get(low_order_moments.variance), "Variance:") printNumericTable(res.get(low_order_moments.standardDeviation), "Standard deviation:") printNumericTable(res.get(low_order_moments.variation), "Variation:") if __name__ == "__main__": # Initialize FileDataSource to retrieve input data from .csv file dataSource = FileDataSource( dataFileName, DataSourceIface.doAllocateNumericTable, DataSourceIface.doDictionaryFromContext ) # Retrieve the data from input file dataSource.loadDataBlock() # Create algorithm for computing low order moments in batch processing mode algorithm = low_order_moments.Batch() # Set input arguments of the algorithm algorithm.input.set(low_order_moments.data, dataSource.getNumericTable()) # Get computed low order moments res = algorithm.compute() printResults(res)
Intel DAAL AI加速——支持从数据预处理到模型预测,数据源必须使用DAAL的底层封装库
标签:related guid art analysis mode int documents led ide
原文地址:https://www.cnblogs.com/bonelee/p/9702982.html