标签:cti ane accept 运算符 else ace sea out operator
Time Limit: 4000/4000 MS (Java/Others) Memory Limit: 512000/512000 K (Java/Others)
Total Submission(s): 4238 Accepted Submission(s): 1623
#include <bits/stdc++.h> #define INF 0x3f3f3f3f #define rep(i,a,n) for(int i=a;i<n;++i) #define per(i,a,n) for(int i=n-1;i>=a;--i) using namespace std; typedef long long ll; const double eps = 1e-10; const double PI = acos(-1.0); const int maxn = 2500; //注意修改 int n; //有的命名为sgn函数,高精度符号判断 int dcmp(double x) { //相等函数判断,减少精度问题 if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } //点的定义 class Point { public: double x, y; Point(double x = 0, double y = 0): x(x), y(y) {} //构造函数,方便代码的编写 } point[maxn], pafter[maxn]; typedef Point Vector;// 从程序实现上,Vector只是Point的别名 //运算符重载 Vector operator + (const Vector &A, const Vector &B) { return Vector(A.x + B.x, A.y + B.y); //向量+向量=向量,点+向量=点 } Vector operator - (const Vector &A, const Vector &B) { return Vector(A.x - B.x, A.y - B.y); //向量-向量=向量,点-向量-点 } Vector operator * (const Vector &A, double p) { return Vector(A.x * p, A.y * p); //向量*数=向量 (数乘) } Vector operator / (const Vector &A, double p) { return Vector(A.x / p, A.y / p); //向量/数=向量 (数除) } double operator * (const Vector &A, const Vector &B) { return A.x * B.x + A.y * B.y; //向量(点乘)向量=数 (点乘) } bool operator < (const Point &A, const Point &B) { return A.x == B.x ? A.y < B.y : A.x < B.x; //按x值递增排序 } bool operator == (const Point &A, const Point &B) { return dcmp(A.x - B.x) == 0 && dcmp(A.y - B.y) == 0; //判定两个点是否相同,用到dcmp精度判定 } //点乘叉乘 double dot(const Vector &A, const Vector &B) { return A.x * B.x + A.y * B.y; //向量(叉乘)向量=向量 (叉乘) } double operator ^ (const Vector &A, const Vector &B) { return A.x * B.y - A.y * B.x; } double cross(const Vector &A, const Vector &B) { return A.x * B.y - A.y * B.x; } //模长面积 double abs(const Vector &A) { return sqrt(dot(A, A)); //计算向量模长 } double area2(const Point &A, const Point &B, const Point &C) { return cross(B - A, C - A) ; //计算平行四边形方向面积 } double PolygonArea(Point *p, int n) { double area = 0; //计算多边形的有向面积 rep(i, 1, n - 1) { area += cross(p[i] - p[0], p[i + 1] - p[0]); } return area / 2.0; } //旋转 Vector rotate(Vector A, double rad) { return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad)); //旋转rad弧度 } Vector normal(Vector A) { double l = abs(A); //计算单位法线,左转90 return Vector(-A.y / l, A.x / l); } double torad(double deg) { return deg / 180 * acos(-1); //角度转弧度 } //线段定义 class Line { public: Point s, e; Line() {} Line(Point _s, Point _e) { s = _s; e = _e; } } line[maxn]; bool inter(Line l1, Line l2) { return ( max(l1.s.x, l1.e.x) >= min(l2.s.x, l2.e.x) && max(l2.s.x, l2.e.x) >= min(l1.s.x, l1.e.x) && max(l1.s.y, l1.e.y) >= min(l2.s.y, l2.e.y) && max(l2.s.y, l2.e.y) >= min(l1.s.y, l1.e.y) && dcmp((l2.s - l1.s) ^ (l1.s - l1.e)) * dcmp((l2.e-l1.s) ^ (l1.s - l1.e)) < 0 && dcmp((l1.s - l2.s) ^ (l2.s - l2.e)) * dcmp((l1.e-l2.s) ^ (l2.s - l2.e)) < 0 ) ; } bool inter(Point a1, Point a2, Point b1, Point b2) { Line l1(a1, a2), l2(b1, b2); return inter(l1, l2); } bool cmp(Point a, Point b) { if(a.x == b.x) return a.y < b.y; else return a.x < b.x; } double dist(Point a, Point b) { return sqrt((a - b) * (a - b)); } //求两直线交点 Point getinter(Line l1, Line l2) { Vector v = l1.s - l1.e; Vector w = l2.s - l2.e; Vector u = l1.e-l2.e; double t = cross(w, u) / cross(v, w); return l1.e+v * t; } Point getinter(Point a1, Point a2, Point b1, Point b2) { Line l1(a1, a2); Line l2(b1, b2); return getinter(l1, l2); } //判定点和线段的关系, //0:不在线段所在直线上 //1:在线段内(不含端点) //2:在线段端点 //3:在线段两侧的射线上 int online(Point a, Line l) { if(dcmp(cross(l.s - a, l.e-a)) != 0) return 0; double pans = dcmp(dot(l.s - a, l.e-a)); if(pans < 0) return 1; else if(pans == 0) return 2; else if(pans > 0) return 3; } int online(Point a, Point b1, Point b2) { Line l(b1, b2); return online(a, l); } int sgn(double x) { if(fabs(x) < eps) return 0; if(x < 0) return -1; else return 1; } double Area_of_overlap(Point c1, double r1, Point c2, double r2) { double d = dist(c1, c2); if(r1 + r2 < d + eps) return 0; if(d < fabs(r1 - r2) + eps) { double r = min(r1, r2); return PI * r * r; } double x = (d * d + r1 * r1 - r2 * r2) / (2 * d); double t1 = acos(x / r1); double t2 = acos((d - x) / r2); return r1 * r1 * t1 + r2 * r2 * t2 - d * r1 * sin(t1); } int t; double RR, rr; double xx1, yy1, xx2, yy2; int main() { ios::sync_with_stdio(false); cin >> t; rep(tt, 1, t + 1) { cin >> rr >> RR >> xx1 >> yy1 >> xx2 >> yy2; double ans1, ans2, ans3, ans4; ans1 = Area_of_overlap(Point(xx1, yy1), RR, Point(xx2, yy2), RR); ans2 = Area_of_overlap(Point(xx1, yy1), RR, Point(xx2, yy2), rr); ans3 = Area_of_overlap(Point(xx1, yy1), rr, Point(xx2, yy2), RR); ans4 = Area_of_overlap(Point(xx1, yy1), rr, Point(xx2, yy2), rr); cout << "Case #" << tt << ": "; cout << fixed << setprecision(6) << ans1 - ans2 - ans3 + ans4 << endl; } return 0; }
标签:cti ane accept 运算符 else ace sea out operator
原文地址:https://www.cnblogs.com/songorz/p/9710620.html