码迷,mamicode.com
首页 > 其他好文 > 详细

计算机视觉基本原理——RANSAC

时间:2018-09-28 11:01:13      阅读:158      评论:0      收藏:0      [点我收藏+]

标签:定义   blank   变换   enc   函数   错误   经验   分析   back   

公众号【视觉IMAX】第31篇原创文章

 一 前言

对于上一篇文章——一分钟详解「本质矩阵」推导过程中,如何稳健地估计本质矩阵或者基本矩阵呢?正是这篇文章重点介绍的内容。

基本矩阵求解方法主要有:

1)直接线性变换法

 

     a)8点法

 

     b)最小二乘法

 

2)基于RANSAC的鲁棒方法。

 

先简单介绍一下直接线性变换法:

 

技术分享图片

 

技术分享图片

 

注:
三个红线标注的三个等式等价。

 

在上述分析过程中,如果n>=8时,最小二乘法求解是否是最优估计呢?

接下来,我们重点探讨一下这个问题。

二 稳健估计

2.1 稳健的定义

稳健(robust):对数据噪声的敏感性。

 

技术分享图片

对于上述采样,如果出现外点(距离正确值较远),将会影响实际估计效果。

2.2 RANSAC——随机一致性采样

RANSAC主要解决样本中的外点问题,最多可处理50%的外点情况。

基本思想:

RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证:

  1. 有一个模型适用于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。

  2. 用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。

  3. 如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。

  4. 然后,用所有假设的局内点去重新估计模型,因为它仅仅被初始的假设局内点估计过。

  5. 最后,通过估计局内点与模型的错误率来评估模型。

这个过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为它比现有的模型更好而被选用。

技术分享图片

 

对上述步骤,进行简单总结如下:

 

技术分享图片

 

举个例子:使用RANSAC——拟合直线

技术分享图片

 

 

技术分享图片

 

技术分享图片

 

技术分享图片

 

技术分享图片

 

技术分享图片

 

2.3 关于OpenCV中使用到RANSAC的相关函数

1. solvePnPRansac

2. findFundamentalMat

 

荐读

Homography matrix(单应性矩阵)在广告投放中的实践

那些你所不知道的文献下载网址经验总结

Matlab R2018a 64位安装教程

 

技术分享图片

计算机视觉基本原理——RANSAC

标签:定义   blank   变换   enc   函数   错误   经验   分析   back   

原文地址:https://www.cnblogs.com/YongQiVisionIMAX/p/9716664.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!