码迷,mamicode.com
首页 > 其他好文 > 详细

P2467 [SDOI2010]地精部落

时间:2018-09-28 14:43:23      阅读:124      评论:0      收藏:0      [点我收藏+]

标签:部落   title   预处理   cstring   奇数   相同   位置   难度   size   

传送门

思维难度很大的DP

设 f [ i ] 表示长度为 i 的山脉的合法方案数

考虑枚举最高的山的位置 j

那么在不考虑 j 左右两边是山谷或山脉的情况下

f[ i ] += f[ j-1 ] * f[ i-j ] * C[ i-1 ] [ j-1 ](C[ i-1 ] [ j-1 ] 表示i-1种高度选出 j-1 种高度的山给左边一段,i-1是因为最高峰不能取)

就是山峰左边一段的方案乘上右边一段的方案再乘上 组合数

乘上C是因为 f[ j-1 ] 只有山高度为 1~j-1 的情况

在有 i 个山 的情况下 f[ j-1 ] 指的就变成了相对的高度的方案数

山的高度的取法就有 C[i-1] [ j-1 ] 种

然后考虑 j 的左右两边的山的情况

设 f [ i ] [ 0/1 ] i 的含义不变, 0表示第一位为山谷,1表示第一位为山峰

可以发现,如果我们知道山脉的长度以及第一位的状态,我们就可以得到最后一位的状态:

如果长度为奇数,最后一个山的状态就与第一位相反

反之长度为偶数,最后一个山的状态就与第一位相同

因为我们枚举的是最高峰的位置

所以左边半段的山脉的最后一个山必须为山谷

右边半段的山脉的第一个山必须为山谷

所以可以得出转移方程:

if(j&1)   f[ i ] [ 0 ] += f[ j-1 ] [ 0 ] * f[ i-j ] [ 0 ] * C[ i-1 ] [ j-1 ]

else      f[ i ] [ 1 ] += f[ j-1 ] [ 1 ] * f[ i-j ] [ 0 ] * C[ i-1 ] [ j-1 ]

(左边半段的第一位一定要与总状态的第一位相同)

有了方程就好搞了

 

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
long long n,m;
long long f[4207][2],C[4207][4207];
int main()
{
    scanf("%lld%lld",&n,&m);
    //先预处理一波组合数
    C[0][0]=1;
    for(int i=1;i<=n;i++)
    {
        C[i][0]=C[i][i]=1;
        for(int j=1;j<i;j++)
            C[i][j]=(C[i-1][j-1]+C[i-1][j])%m;
    }

    f[0][0]=f[0][1]=f[1][0]=f[1][1]=1;//初始状态
    for(int i=2;i<=n;i++)
        for(int j=1;j<=i;j++)//注意j的范围
        {
            if(j&1)
                f[i][0]=(f[i][0]+( ( f[j-1][0]*f[i-j][0]%m ) * C[i-1][j-1]%m) )%m;
            else
                f[i][1]=(f[i][1]+( ( f[j-1][1]*f[i-j][0]%m ) * C[i-1][j-1]%m) )%m;
        }
    printf("%lld",(f[n][0]+f[n][1])%m);
    return 0;
}

 

P2467 [SDOI2010]地精部落

标签:部落   title   预处理   cstring   奇数   相同   位置   难度   size   

原文地址:https://www.cnblogs.com/LLTYYC/p/9717451.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!