标签:accept bool lin ems uva while back ase print
Take any directed graph D with n vertices and m edges. You can make the Lying graph E of B in the following way. E will have m vertices, one for each edge of D. For example, if D has an edge uv, then E will have a vertex called uv. Now, whenever D has edges uv and vw, E will have an edge from vertex uv to vertex vw. There are no other edges in E. You will be given a graph E and will have to determine whether it is possible for E to be the Lying graph of some directed graph D.
The ?rst line of input gives the number of cases, N (N < 220). N test cases follow. Each one starts with two lines containing m (0 ≤ m ≤ 300) and k. The next k lines will each contain a pair of vertices, x and y, meaning that there is an edge from x to y in E. The vertices are numbered from 0 to m?1
Case #1: Yes
Case #2: Yes
Case #3: No
Case #4: Yes
题解:这种结论题真的是做不来。首先第一感觉是这怎么会不存在呢,然后样例三强势打脸,但是感觉上不成立的情况应该很少,但是少到何种程度完全没有认识,最后思来想去还是看了题解,题解都是千篇一律的结论,并且没有人证明那是充要的,至多证明是必要的,做这个题就当涨见识了。
1 #include <bits/stdc++.h> 2 3 using namespace std; 4 5 const int maxn = 300 + 10; 6 int gra[maxn][maxn]; 7 8 int m, t; 9 10 int read() { 11 int q = 0; 12 char ch = ‘ ‘; 13 while (ch<‘0‘ || ch>‘9‘) ch = getchar(); 14 while (‘0‘ <= ch && ch <= ‘9‘) { 15 q = q * 10 + ch - ‘0‘; 16 ch = getchar(); 17 } 18 return q; 19 } 20 21 bool solve() { 22 for (int i = 0; i < m; i++) { 23 for (int j = 0; j < m; j++) { 24 int f1 = 0, f2 = 0; 25 for (int k = 0; k < m; k++) { 26 if (gra[i][k] && gra[j][k]) f1 = 1; 27 if (gra[i][k] ^ gra[j][k]) f2 = 1; 28 if (f1 && f2) return false; 29 } 30 } 31 } 32 return true; 33 } 34 35 int T = 1; 36 37 int main() 38 { 39 int iCase; 40 iCase = read(); 41 while (iCase--) { 42 memset(gra, 0, sizeof(gra)); 43 m = read(), t = read(); 44 int u, v; 45 for (int i = 0; i < t; i++) { 46 u = read(), v = read(); 47 gra[u][v] = 1; 48 } 49 50 printf("Case #%d: ",T++); 51 if (solve()) printf("Yes\n"); 52 else printf("No\n"); 53 } 54 return 0; 55 }
11175-From D to E and Back(思维)
标签:accept bool lin ems uva while back ase print
原文地址:https://www.cnblogs.com/npugen/p/9721646.html