码迷,mamicode.com
首页 > 其他好文 > 详细

[POI2018]Pionek

时间:2018-09-29 18:20:57      阅读:183      评论:0      收藏:0      [点我收藏+]

标签:cpp   main   连续   log   最大   mat   bool   getch   复制   

[POI2018]Pionek

题目大意:

在无限大的二维平面的原点放置着一个棋子。你有\(n(n\le2\times10^5)\)条可用的移动指令,每条指令可以用一个二维整数向量表示。请你选取若干条指令,使得经过这些操作后,棋子离原点的距离最大。

思路:

将所有向量极角排序,然后你选取的向量一定是里面连续的一段,由于所有向量排成一个环,所以要复制一遍接在后面,最后用尺取法枚举左右端点即可。

时间复杂度\(\mathcal O(n\log n)\)

源代码:

#include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
    register char ch;
    register bool neg=false;
    while(!isdigit(ch=getchar())) neg|=ch=='-';
    register int x=ch^'0';
    while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
    return neg?-x:x;
}
typedef long long int64;
const int N=4e5+2;
struct Point {
    int64 x,y;
    double a;
    bool operator < (const Point &rhs) const {
        return a<rhs.a;
    }
    Point operator + (const Point &rhs) const {
        return (Point){x+rhs.x,y+rhs.y,a+rhs.a};
    }
};
Point p[N],sum[N];
inline int64 sqr(const int64 &x) {
    return x*x;
}
int main() {
    const int n=getint();
    for(register int i=1;i<=n;i++) {
        p[i].x=getint();
        p[i].y=getint();
        p[i].a=atan2(p[i].x,p[i].y);
    }
    std::sort(&p[1],&p[n]+1);
    std::copy(&p[1],&p[n]+1,&p[n+1]);
    for(register int i=n+1;i<=n*2;i++) {
        p[i].a+=M_PI*2;
    }
    int64 ans=0;
    sum[n*2].a=1e8;
    for(register int i=1,j=1;j<=n*2;j++) {
        sum[j]=sum[j-1]+p[j];
        for(;i<=j&&p[j+1].a-p[i].a>=M_PI;i++) {
            ans=std::max(ans,sqr(sum[j].x-sum[i-1].x)+sqr(sum[j].y-sum[i-1].y));
        }
        if(i<=j) ans=std::max(ans,sqr(sum[j].x-sum[i-1].x)+sqr(sum[j].y-sum[i-1].y));
    }
    printf("%lld\n",ans);
    return 0;
}

[POI2018]Pionek

标签:cpp   main   连续   log   最大   mat   bool   getch   复制   

原文地址:https://www.cnblogs.com/skylee03/p/9725127.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!