码迷,mamicode.com
首页 > 其他好文 > 详细

Eigen

时间:2014-10-09 17:13:37      阅读:262      评论:0      收藏:0      [点我收藏+]

标签:http   os   for   sp   on   ad   ef   size   bs   

MatrixXd m (4, 6);
for (int i = 0; i < m.size(); ++i) 
  m (i) = i;

MatrixXd mc = m;/// 已经是深度拷贝

 

////// 协方差矩阵
Eigen::MatrixXd cov( Eigen::MatrixXd m ){
  MatrixXd centered = m.rowwise() - m.colwise().mean();
  return (centered.adjoint() * centered) / double(m.rows());
}

 

//////Kronecker tensor product

Eigen::MatrixXd kron( Eigen::MatrixXd m1, Eigen::MatrixXd m2 ){
  int m1R,m1C,m2R,m2C;
  m1R = m1.rows();
  m1C = m1.cols();

  m2R = m2.rows();
  m2C = m2.cols();

  Eigen::MatrixXd m3(m1R*m2R,m1C*m2C);

  for (int i = 0; i < m1C; i++) {
    for (int j = 0; j < m1R; j++) {
      m3.block(i*m2R, j*m2C, m2R, m2C ) = m1(i,j)*m2;
    }
  }
  return m3;
}

 

//// 将矩阵m的前 rowNum 行 转换为一列
Eigen::MatrixXd row2vector( Eigen::MatrixXd m, int rowNum ){
  int colNum = m.cols();
  Eigen::MatrixXd mt = m.transpose();
  MatrixXd v;
  v = Map<MatrixXd>( mt.leftCols(rowNum).data(),rowNum*colNum, 1 );
  return v;
}

 

很有意义的参考文档

Matlab Vs Eigen 

http://eigen.tuxfamily.org/dox-devel/AsciiQuickReference.txt

据说很快的SVD---redsvd

https://code.google.com/p/redsvd/

 

Eigen

标签:http   os   for   sp   on   ad   ef   size   bs   

原文地址:http://www.cnblogs.com/jalps/p/4013567.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!