标签:超时 can 动态规划 == case eps tput lse turn
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
Example 1:
Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
要走到第n个阶梯,最后一步只有两种,先走到第n-1个阶梯,然后再走一步,或者先走到第n-2个阶梯,然后再走2步;所以走到第n个阶梯的方法数=走到第n-1个阶梯的方法数+走到第n-2个阶梯的方法数,很明显这是一个递归。时间复杂度接近2的n次方(想象一下递归的树)。但是很不幸,这种方法超时了。。。不过还是写出来。
class Solution {
public int climbStairs(int n) {
if(n == 1) return 1;
if(n == 2) return 2;
else return climbStairs(n-1) + climbStairs(n-2);
}
}
递归中有太多重复计算的东西,所以我们可以用动态规划的思想,自下而上,进行迭代计算。时间复杂度为O(n),空间复杂度为O(1)。
class Solution {
public int climbStairs(int n) {
HashMap<Integer, Integer> map = new HashMap<Integer,Integer>();
if(n == 1) return 1;
if(n == 2) return 2;
int a = 1;
int b = 2;
int temp = 0;
for(int i = 2; i < n; i++){
temp = a + b;
a = b;
b = temp;
}
return temp;
}
}
标签:超时 can 动态规划 == case eps tput lse turn
原文地址:https://www.cnblogs.com/shinjia/p/9728813.html