标签:统计 eof lld 分析 编号 ace print 多少 struct
题意:一个N*M的棋盘上,放置N个皇后,皇后(i,j)可以攻击整行整列和两条对角线.求放完这N个皇后,棋盘上还有多少个点不会被攻击到.
分析:除了行和列之外,还要考虑对角线.对于每一个格点\((x,y)\),都有其对应的主对角线\(x+M-j\)(保证编号>0).如果行i和列j都不会被占据,那么点\((i,j)\)就会对其主对角线做出贡献,当然,需要保证这条对角线上没有皇后.将主对角线视作\(A^k\),则\(A^k的系数为\sum_{i+M-j=k}R^i*C^i\).若i行没有被占据,则\(R^i = 1\),否则为0, 若j列没被占据,\(C^{M-j}\)为1,否则为0.
求出卷积后,若对角线k上没有皇后,则该对角线的系数对答案做出贡献.
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 4e5 + 10;
const double PI = acos(-1.0);
struct Complex{
double x, y;
inline Complex operator+(const Complex b) const {
return (Complex){x +b.x,y + b.y};
}
inline Complex operator-(const Complex b) const {
return (Complex){x -b.x,y - b.y};
}
inline Complex operator*(const Complex b) const {
return (Complex){x *b.x -y * b.y,x * b.y + y * b.x};
}
} va[MAXN * 2 + MAXN / 2], vb[MAXN * 2 + MAXN / 2];
int lenth = 1, rev[MAXN * 2 + MAXN / 2];
int N, M; // f 和 g 的数量
// f g和 的系数
// 卷积结果
// 大数乘积
int f[MAXN],g[MAXN];
vector<LL> conv;
vector<LL> multi;
//f g
void init()
{
int tim = 0;
lenth = 1;
conv.clear(), multi.clear();
memset(va, 0, sizeof va);
memset(vb, 0, sizeof vb);
while (lenth <= N + M - 2)
lenth <<= 1, tim++;
for (int i = 0; i < lenth; i++)
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (tim - 1));
}
void FFT(Complex *A, const int fla)
{
for (int i = 0; i < lenth; i++){
if (i < rev[i]){
swap(A[i], A[rev[i]]);
}
}
for (int i = 1; i < lenth; i <<= 1){
const Complex w = (Complex){cos(PI / i), fla * sin(PI / i)};
for (int j = 0; j < lenth; j += (i << 1)){
Complex K = (Complex){1, 0};
for (int k = 0; k < i; k++, K = K * w){
const Complex x = A[j + k], y = K * A[j + k + i];
A[j + k] = x + y;
A[j + k + i] = x - y;
}
}
}
}
void getConv(){ //求多项式
init();
for (int i = 0; i < N; i++)
va[i].x = f[i];
for (int i = 0; i < M; i++)
vb[i].x = g[i];
FFT(va, 1), FFT(vb, 1);
for (int i = 0; i < lenth; i++)
va[i] = va[i] * vb[i];
FFT(va, -1);
for (int i = 0; i <= N + M - 2; i++)
conv.push_back((LL)(va[i].x / lenth + 0.5));
}
int row[MAXN], col[MAXN];
int vis[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int T,cas=1; scanf("%d",&T);
while(T--){
int R,C,n; scanf("%d %d %d",&R, &C, &n);
int x,y;
memset(vis,0,sizeof(vis));
for(int i=1;i<=R;++i) row[i] = 1;
for(int i=1;i<=C;++i) col[C-i] = 1;
for(int i=1;i<=n;++i){
scanf("%d %d",&x, &y);
vis[x+C-y] = true; //表示该对角线被占据
row[x] = 0, col[C-y] = 0; //行列被占据
}
N = R+1;
M = C; //没被占据的行列做卷积,求合法的对角线
for(int i=0;i<N;++i) f[i] = row[i];
for(int i=0;i<M;++i) g[i] = col[i];
getConv();
int sz = conv.size();
LL ans=0;
for(int i=0;i<sz;++i){
if(!vis[i])
ans+= conv[i]; //若该对角线没被占据,则统计
}
printf("Case %d: %lld\n",cas++,ans);
}
return 0;
}
UVA - 12633 Super Rooks on Chessboard (FFT)
标签:统计 eof lld 分析 编号 ace print 多少 struct
原文地址:https://www.cnblogs.com/xiuwenli/p/9729120.html