码迷,mamicode.com
首页 > 其他好文 > 详细

[UVA1494] Qin Shi Huang's National Road System

时间:2018-09-30 22:47:56      阅读:213      评论:0      收藏:0      [点我收藏+]

标签:empty   can   algo   std   枚举   math   return   原来   处理   

题目

戳这里

题解

从今天起我要改邪归正,好好刷题准备联赛!

这是一道经典的最小生成树题目。
枚举每一条边作为道士要修的路,求出包含这条边的最小生成树。

先求出原图的最小生成树。
如果要删的边在最小生成树上,那仍是原来那个最小生成树。
如果不在,便要把这条边加进去。类似次小生成树,删除原最小生成树中这两点间唯一路径上边权最大的边,并把这条边加进去。

我们要预处理最小生成树上两点间路径上边权最大的边,设它的边权为 \(f[u][v]\)
在求最小生成树的同时 借助父节点更新某一节点到已有生成树中其它节点的 \(f\) 值,复杂度 \(O(n^2)\)

代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>

using namespace std;

const int N = 1005;
typedef double db;
typedef pair<double,int> P;

int w[N],vis[N];
db mp[N][N],a[N],b[N];
int n;

priority_queue< P, vector<P>, greater<P> > que;
db d[N],f[N][N],S;
int fa[N];
void prim(){
    d[1]=0; vis[1]=1; 
    for(int i=2;i<=n;i++) 
        d[i]=mp[1][i],fa[i]=1,que.push(P(d[i],i));
    while(!que.empty()){
        int u=que.top().second;
        que.pop();
        if(vis[u]) continue;
        for(int i=1;i<=n;i++)
            if(vis[i]) {
                if(i==fa[u]) f[i][u]=f[u][i]=mp[u][i];
                else f[i][u]=f[u][i]=max(mp[u][fa[u]],f[fa[u]][i]);
            }
        vis[u]=1; d[u]=0;
        S+=mp[u][fa[u]];
        for(int v=1;v<=n;v++){
            if(v==u) continue;
            if(d[v]>mp[u][v]) 
                fa[v]=u,d[v]=mp[u][v],que.push(P(d[v],v)); 
        }
    }
    for(int i=1;i<=n;i++) vis[i]=0;
}

int main()
{
    int T;
    scanf("%d",&T);
    while(T--){
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            scanf("%lf%lf%d",&a[i],&b[i],&w[i]);
        for(int i=1;i<n;i++)
            for(int j=i+1;j<=n;j++)
                mp[i][j]=mp[j][i]=sqrt((b[i]-b[j])*(b[i]-b[j])+(a[i]-a[j])*(a[i]-a[j]));
        S=0;
        prim();
        db ans=0.0;
        for(int i=1;i<n;i++)
            for(int j=i+1;j<=n;j++)
                ans=max(ans,(w[i]*1.0+w[j]*1.0)/(S-f[i][j]));
        printf("%.2lf\n",ans);
    }
    
    return 0;
}

[UVA1494] Qin Shi Huang's National Road System

标签:empty   can   algo   std   枚举   math   return   原来   处理   

原文地址:https://www.cnblogs.com/lindalee/p/9733349.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!