标签:sizeof add for eof std quic tree turn mes
#include <bits/stdc++.h>
#define MP make_pair
#define PB emplace_back
#define fi first
#define se second
#define ZERO(x) memset((x), 0, sizeof(x))
#define ALL(x) (x).begin(),(x).end()
#define rep(i, a, b) for (repType i = (a); i <= (b); ++i)
#define per(i, a, b) for (repType i = (a); i >= (b); --i)
#define QUICKIO ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
using namespace std;
using ll=long long;
using repType=int;
struct Edge
{
int u, v;
ll w;
Edge() {}
Edge(int _u, int _v, ll _w): u(_u), v(_v), w(_w) {}
bool
operator < (const Edge& rhs) const
{
if(w==rhs.w)
{ return (u==rhs.u)?v<rhs.v:u<rhs.u; }
else { return w<rhs.w; }
}
};
const int MAXN=300005;
vector<Edge> edges;
vector<int> G[MAXN];
void
add_edge(int u, int v, ll w)
{
edges.PB(u, v, w);
G[u].PB(int(edges.size())-1);
}
ll dist[MAXN];
int pre[MAXN]; // pre: last edge
void
dijkstra(int start)
{
memset(pre, -1, sizeof(pre));
memset(dist, 0x3f, sizeof(dist));
using P=pair<ll, int>;
priority_queue<P, vector<P>, greater<> > pq; // <dist, pnt>: 大根堆
dist[start]=0;
pq.push(MP(0, start));
while(!pq.empty())
{
auto now=pq.top(); pq.pop();
int u=now.se;
if(dist[u]<now.fi) { continue; }
rep(i, 0, int(G[u].size())-1)
{
int v=edges[G[u][i]].v;
ll w=edges[G[u][i]].w;
if(dist[v]>dist[u]+w)
{
dist[v]=dist[u]+w;
pre[v]=G[u][i];
pq.push(MP(dist[v], v));
}
else if(dist[v]==dist[u]+w && edges[pre[v]].w>edges[G[u][i]].w)
{ pre[v]=G[u][i]; }
}
}
}
int
main()
{
int n, m;
scanf("%d%d", &n, &m);
rep(i, 1, m)
{
int u, v;
ll w;
scanf("%d%d%lld", &u, &v, &w);
add_edge(u, v, w);
add_edge(v, u, w);
}
int stp; scanf("%d", &stp);
dijkstra(stp);
ll ans=0;
rep(i, 1, n) if(i!=stp) { ans+=edges[pre[i]].w; }
printf("%lld\n", ans);
rep(i, 1, n) if(i!=stp) { printf("%d ", pre[i]/2+1); }
printf("\n");
return 0;
}
「日常训练」Paths and Trees(Codeforces Round 301 Div.2 E)
标签:sizeof add for eof std quic tree turn mes
原文地址:https://www.cnblogs.com/samhx/p/cfr303d2e.html