标签:stdout ons 根据 mat can txt int clu 包含
因为给定的模数P保证是素数,所以P一定有原根.
根据原根的性质,若\(g\)是\(P\)的原根,则\(g^k\)能够生成\([1,P-1]\)中所有的数,这样的k一共有P-2个.
则\(a_i*a_j(mod\ P)=a_k\) 就可以转化为\(g^i*g^j(mod\ P) = g^{i+j}(mod\ P)=g^k\).
问题转化为了求有多少对有序的<i,j>满足 \((i+j)(mod\ (P-1)) = k\).
求出原根后,对\([1,P-1]\)中的每个数编号, 统计每个编号出现的次数,然后FFT求卷积
要特判0,因为原根不会生成0.所以用总的有序对数-其他不含0的有序对数得到含0的有序对,这是0的答案;超过P-1的数肯定没有符合的有序对.
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 2e5+5;
bool notpri[maxn];
int pri[maxn],zyz[maxn];
typedef long long LL;
void pre(int N){
notpri[1]=1;
for(int i=2;i<N;++i){
if(!notpri[i]){
pri[++pri[0]]=i;
}
for(int j=1;j<=pri[0] && (LL)i*(LL)pri[j]<N;++j){
notpri[i*pri[j]]=1;
if(i%pri[j]==0){
break;
}
}
}
}
LL Quick_Pow(LL x,LL p,LL mod){
if(!p){
return 1ll;
}
LL res=Quick_Pow(x,p>>1,mod);
res=res*res%mod;
if((p&1ll)==1ll){
res=(x%mod*res)%mod;
}
return res;
}
int FindRoot(int x){/*求素奇数的最小原根,倘若x不是奇数,但是也有原根的话,将质
因子分解改成对phi(x)即可。倘若要求多个原根,直接接着暴力验证即可*/
int tmp=x-1;
for(int i=1;tmp && i<=pri[0];++i){
if(tmp%pri[i]==0){
zyz[++zyz[0]]=pri[i];
while(tmp%pri[i]==0){
tmp/=pri[i];
}
}
}
for(int g=2;g<=x-1;++g){
bool flag=1;
for(int i=1;i<=zyz[0];++i){
if(Quick_Pow((LL)g,(LL)((x-1)/zyz[i]),(LL)x)==1){
flag=0;
break;
}
}
if(flag){
return g;
}
}
return 0;
}
const int MAXN = 4e5 + 10;
const double PI = acos(-1.0);
struct Complex{
double x, y;
inline Complex operator+(const Complex b) const {
return (Complex){x +b.x,y + b.y};
}
inline Complex operator-(const Complex b) const {
return (Complex){x -b.x,y - b.y};
}
inline Complex operator*(const Complex b) const {
return (Complex){x *b.x -y * b.y,x * b.y + y * b.x};
}
} va[MAXN * 2 + MAXN / 2], vb[MAXN * 2 + MAXN / 2];
int lenth = 1, rev[MAXN * 2 + MAXN / 2];
int N, M; // f 和 g 的数量
//f g和 的系数
// 卷积结果
// 大数乘积
int f[MAXN],g[MAXN];
vector<LL> conv;
vector<LL> multi;
//f g
void init()
{
int tim = 0;
lenth = 1;
conv.clear(), multi.clear();
memset(va, 0, sizeof va);
memset(vb, 0, sizeof vb);
while (lenth <= N + M - 2)
lenth <<= 1, tim++;
for (int i = 0; i < lenth; i++)
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (tim - 1));
}
void FFT(Complex *A, const int fla)
{
for (int i = 0; i < lenth; i++){
if (i < rev[i]){
swap(A[i], A[rev[i]]);
}
}
for (int i = 1; i < lenth; i <<= 1){
const Complex w = (Complex){cos(PI / i), fla * sin(PI / i)};
for (int j = 0; j < lenth; j += (i << 1)){
Complex K = (Complex){1, 0};
for (int k = 0; k < i; k++, K = K * w){
const Complex x = A[j + k], y = K * A[j + k + i];
A[j + k] = x + y;
A[j + k + i] = x - y;
}
}
}
}
void getConv(){ //求多项式
init();
for (int i = 0; i < N; i++)
va[i].x = f[i];
for (int i = 0; i < M; i++)
vb[i].x = g[i];
FFT(va, 1), FFT(vb, 1);
for (int i = 0; i < lenth; i++)
va[i] = va[i] * vb[i];
FFT(va, -1);
for (int i = 0; i <= N + M - 2; i++)
conv.push_back((LL)(va[i].x / lenth + 0.5));
}
LL vz[MAXN];
int id[MAXN];
int cnt[MAXN];
int rnk[MAXN];
LL ans[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
pre(maxn-1);
int n,P ;
scanf("%d %d",&n, &P);
int rt = FindRoot(P);
memset(id,0,sizeof(id));
LL idx = 1;
for(int i=0;i<P-1;++i){ //一共只有[0,P-2],P-1个id
id[idx] = i;
rnk[i]= idx;
idx = idx*rt%P;
}
for(int i=1;i<=n;++i){
LL tmp;
scanf("%lld",&tmp);
vz[i] = tmp;
tmp%=P;
if(tmp==0) continue; //卷积中不考虑0的贡献
cnt[id[tmp]]++;
}
N = M = P;
for(int i=0;i<P-1;++i){
f[i] = g[i] = cnt[i];
}
getConv();
int sz = conv.size();
for(int i=0;i<sz;++i){
LL tmp = conv[i];
ans[rnk[i%(P-1)]] += tmp;
}
LL tot = (LL)n*n; //全部的枚举可能-不选0之外的组合 = 包含0的组合
for(int i=1;i<P;++i){
tot -= ans[i];
}
ans[0] = tot;
for(int i=1;i<=n;++i){
if(vz[i]>=P) printf("0\n");
else{
printf("%lld\n",ans[vz[i]]);
}
}
return 0;
}
2018秦皇岛ccpc-camp Steins;Gate (原根+FFT)
标签:stdout ons 根据 mat can txt int clu 包含
原文地址:https://www.cnblogs.com/xiuwenli/p/9735804.html