标签:[] find reduce append dfs else rac sorted tracking
18. 4Sum
class Solution(object):
def fourSum(self, nums, target):
nums.sort()
results = []
self.findNsum(nums, target, 4, [], results)
return results
def findNsum(self, nums, target, N, result, results):
if len(nums) < N or N < 2: return
# solve 2-sum
if N == 2:
l,r = 0,len(nums)-1
while l < r:
if nums[l] + nums[r] == target:
results.append(result + [nums[l], nums[r]])
l += 1
r -= 1
while l < r and nums[l] == nums[l - 1]:
l += 1
while r > l and nums[r] == nums[r + 1]:
r -= 1
elif nums[l] + nums[r] < target:
l += 1
else:
r -= 1
else:
for i in range(0, len(nums)-N+1): # careful about range
if target < nums[i]*N or target > nums[-1]*N: # take advantages of sorted list
break
if i == 0 or i > 0 and nums[i-1] != nums[i]: # recursively reduce N
self.findNsum(nums[i+1:], target-nums[i], N-1, result+[nums[i]], results)
combination sum
def combinationSum(candidates, target):
res = []
candidates.sort()
self.dfs(candidates, target, 0, [], res)
return res
def dfs(self, nums, target, index, path, res):
if target < 0:
return # backtracking
if target == 0:
res.append(path)
return
for i in xrange(index, len(nums)):
self.dfs(nums, target-nums[i], i, path+[nums[i]], res)
return result
标签:[] find reduce append dfs else rac sorted tracking
原文地址:https://www.cnblogs.com/ffeng0312/p/9739056.html