码迷,mamicode.com
首页 > 其他好文 > 详细

51Nod 1117 聪明的木匠

时间:2018-10-04 10:08:44      阅读:185      评论:0      收藏:0      [点我收藏+]

标签:整数   string   size   using   priority   turn   space   没有   描述   

聪明的木匠

题目来源: 河北大学算法艺术协会

基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注

描述

一位老木匠需要将一根长的木棒切成N段。每段的长度分别为L1,L2,......,LN(1 <= L1,L2,…,LN <= 1000,且均为整数)个长度单位。我们认为切割时仅在整数点处切且没有木材损失。
木匠发现,每一次切割花费的体力与该木棒的长度成正比,不妨设切割长度为1的木棒花费1单位体力。例如:若N=3,L1 = 3,L2 = 4,L3 = 5,则木棒原长为12,木匠可以有多种切法,如:先将12切成3+9.,花费12体力,再将9切成4+5,花费9体力,一共花费21体力;还可以先将12切成4+8,花费12体力,再将8切成3+5,花费8体力,一共花费20体力。显然,后者比前者更省体力。
那么,木匠至少要花费多少体力才能完成切割任务呢?

Input

第1行:1个整数N(2 <= N <= 50000)
第2 - N + 1行:每行1个整数Li(1 <= Li <= 1000)。

Output

输出最小的体力消耗。

Input示例

3
3
4
5

Output示例

19

题解

假设总长为12,则需要最少的体力为19,步骤如下,先将12切成7+5,耗费12体力,再将7切成3+4,耗费7体力,总耗费体力19。所以我们总是优先将最长的那一段先切下来,最终所耗费的体力为最小。倒推过去,最少所消耗的体力值总是最小的两个值相加,再将这个值放入容器中,再寻找最小的两个值相加,重复这个步骤直到容器的大小为1,正好符合 堆 的性质,所以我们可以用优先队列来解决这个问题。代码如下:

#include <iostream>
#include <algorithm>
#include <string>
#include <cstring>
#include <vector>
#include <map>
#include <queue>
#define ll long long

using namespace std ;

int main(){
    int t ;
    while ( cin >> t ){
        priority_queue<ll , vector<ll> , greater<ll> > p_que ;
        for ( int i = 0 ; i < t ; i ++ ){
            ll x ;
            cin >> x ;
            p_que.push(x) ;
        }
        ll ans = 0 ;
        while ( p_que.size() != 1 ){
            ll num = p_que.top() ;
            p_que.pop() ;
            num += p_que.top() ;
            p_que.pop() ;
            ans += num ;
            p_que.push(num) ;
        }
        cout << ans << endl ;
    }
    return 0 ;
}

51Nod 1117 聪明的木匠

标签:整数   string   size   using   priority   turn   space   没有   描述   

原文地址:https://www.cnblogs.com/Cantredo/p/9739993.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!