码迷,mamicode.com
首页 > 其他好文 > 详细

P3868 [TJOI2009]猜数字

时间:2018-10-04 18:22:13      阅读:111      评论:0      收藏:0      [点我收藏+]

标签:中国剩余定理   mod   exgcd   mat   pre   随笔   \n   iic   printf   

中国剩余定理的模板题。

虽然说是CRT的模板,但是我不会CRT啊。我只会EXCRT

思路很清晰,都写在注释里面了。不懂的话看看我前面写过的一篇模板题的随笔。

PS:很荣幸能够帮到@niiick大佬。我帮大佬指正了一个小学生才纠结的东西。。。

技术分享图片

代码:

#include<cstdio>
#include<cmath>

const int maxn = 15;
#define ll long long
ll a[maxn], b[maxn], n;

ll exgcd(ll a, ll b, ll &x, ll &y)
{
    if(b == 0){ x = 1; y = 0; return a; }
    else
    {
        ll ret = exgcd(b, a % b, x, y);
        ll t = x;
        x = y;
        y = t - a / b * y;
        return ret;
    }
}
ll excrt()
{
    ll ans = a[1], M = b[1];
    for(int i = 2; i <= n; i++)
    {
        // ans + k * M
        // ans + t * M === a[i] (mod b[i])
        // t * M === a[i] - ans (mod b[i])
        // t * M - yy * b[i] = a[i] - ans
        // solve it through x * M - y * b[i] = gcd(M, b[i])
        // t : x = a[i] - ans : gcd(M, b[i])
        // t - bg = t - b[i] / gcd(M, b[i])
        // upd
        
        ll A = M, B = b[i], C = ((a[i] - ans) % b[i] + b[i]) % b[i];
        ll x, y;
        ll g = exgcd(A, B, x, y);
        if(C % g != 0) return -1;
        ll bg = B / g;
        x = x * C / g % b[i];
        x = (x + bg) % bg + bg;
        ans += x * M;
        M *= bg;
        ans = (ans % M + M) % M;
    }
    return (ans % M + M) % M;
}
int main()
{
    // b_i | (n - a_i)
    // n - a_i % b_i = 0
    // n - a_i === 0 (mod b_i)
    // n === a_i (mod b_i)
    scanf("%lld", &n);
    for(int i = 1; i <= n; i++) scanf("%lld", &a[i]);
    for(int i = 1; i <= n; i++) scanf("%lld", &b[i]);
    printf("%lld\n", excrt());
    return 0;
}

P3868 [TJOI2009]猜数字

标签:中国剩余定理   mod   exgcd   mat   pre   随笔   \n   iic   printf   

原文地址:https://www.cnblogs.com/Garen-Wang/p/9742728.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!