码迷,mamicode.com
首页 > 其他好文 > 详细

平时八测

时间:2018-10-04 18:23:16      阅读:147      评论:0      收藏:0      [点我收藏+]

标签:close   ret   col   def   从后往前   \n   gcd   pow   sizeof   

技术分享图片

技术分享图片

技术分享图片

技术分享图片

第一题:

轮廓线DP,从后往前存;复杂度R*C*2^16;

学习了一波std的写法,非常优美;

技术分享图片
#include<bits/stdc++.h>
using namespace std;

const int M = (1<<16) + 1;
int dp[2][M], cnt[M], len[130];
char sc[130][20];
inline int bit(int x){
    if(!x) return 0;
    return bit(x>>1) + (x&1);
}

int main(){
    freopen("group.in","r",stdin);
    freopen("group.out","w",stdout);
    int n, m;
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i++){
        scanf("%s", sc[i] + 1);
        len[i] = strlen(sc[i] + 1);
    }
    for(int s = 0; s < (1<<m); s++)
        cnt[s] = bit(s);
    int u = 1;
    for(int i = 1; i <= m; i++) sc[0][i] = $;
    for(int i = 0; i < n*m; i++){
        u ^= 1;
        memset(dp[u^1], 0, sizeof(dp[u^1]));
        int row = i/m, now = i%m;
        for(int s = 0; s < (1<<m); s++){
            int nxt = s>>(m-now), lst = s^(nxt<<(m-now));
            int lstnum = cnt[lst], nxtnum = cnt[nxt];
            if(nxtnum > len[row+1] || nxtnum + m - now < len[row+1] || lstnum > len[row] || lstnum + now < len[row])continue;
            if(nxtnum < len[row+1]){
                int tmp = 0;
                if((s&1) && (sc[row+1][nxtnum+1] == sc[row][len[row]-lstnum+1])) tmp += 2;
                if((s&(1<<(m-1))) && (sc[row+1][nxtnum] == sc[row+1][nxtnum+1])) tmp += 2;
                int &t = dp[u^1][(s>>1) | (1<<(m-1))];
                t = max(t, dp[u][s] + tmp);
            }
            int &t = dp[u^1][s>>1];
            t = max(t, dp[u][s]);
            //printf("%d %d %d %d\n",row, now, s, dp[u][s]);
        }
    }
    int ret = 0;
    for(int s = 0; s < (1<<m); s++)ret = max(ret, dp[(n*m)&1][s]);
    printf("%d\n", ret);
}
View Code

 

第二题:

组合数,枚举向左走了多少步, 那么向右向下向上的步数都确定了,然后在T步中分配这些位置就好了;

C(T, lf) * C(T - lf, rg) * C(T - lf - rg, up);

60:

技术分享图片
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int M = 3e5;
ll mod, fac[M], vfac[M];
int C[105][105];
inline int moc (int a){return a >= mod ? a - mod : a;} 

ll exgcd(ll a, ll b, ll &x, ll &y){
    if(!b){x=1;y=0;}
    else {
        ll x0, y0;
        exgcd(b, a%b, x0, y0);
        x = y0;
        y = x0 - (a/b)*y0;
    }
}

inline ll ni(ll a){
    ll x, y;
    exgcd(a, mod, x, y);
    return (x%mod + mod)%mod;
}

void init(int T){
    int ret = T;
    fac[0] = vfac[0] = 1;
    for(int i=1;i<=ret;i++) {
        fac[i]=fac[i-1]*(ll)i%mod, vfac[i]=ni(fac[i]);
    }
}
void init2(int T){
    int ret = T;
    for(int i=0;i<=ret;i++)
        for(int j=0;j<=i;j++)
            if(j==0||i==j)C[i][j]=1;
            else C[i][j] = moc(C[i-1][j-1] + C[i-1][j]);
}

int main(){
    freopen("visit.in","r",stdin);
    freopen("visit.out","w",stdout);
    int T;
    scanf("%d%lld", &T, &mod);
    if(T <= 100){
        init2(T);
        int n, m, ans = 0;
        scanf("%d%d", &n, &m);
        if(n < 0) n = -n;
        if(m < 0) m = -m;
        int res = T - n - m;
        if(res < 0 || res & 1)return !puts("0");
        res/=2;
        for(int i=0;i<=res;i++){
            int a1 = C[T][i+n];
            int a2 = C[T-i-n][i];
            int a3 = C[T-i-n-i][res-i];
            ans = (ans + a1 * a2 % mod * a3 % mod) % mod;
        }
        printf("%d\n", ans);
    }
    
    else {
        init(T);
        int n, m;ll ans = 0;
        scanf("%d%d", &n, &m);
        if(n < 0) n = -n;
        if(m < 0) m = -m;
        int res = T - n - m;
        if(res < 0 || res & 1)return !puts("0");
        res/=2;
        for(int i=0;i<=res;i++){
            ll a1 = fac[T] * vfac[i+n] % mod * vfac[T - (i+n)] % mod;
            ll a2 = fac[T-i-n] * vfac[i] % mod * vfac[T-i-n-i] % mod;
            ll a3 = fac[T-i-n-i] * vfac[res-i] % mod * vfac[T-i-n-i-(res-i)]% mod;
            ans = (ans + a1 * a2 % mod * a3 % mod) % mod;
        }
        printf("%lld\n", ans);
    }
    
        
        
}
View Code

 

100:(std)(对于模数不是质数的,有些数就没有拟元了,要用中国剩余定理)

技术分享图片
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

const int MAXN=100005 ;
int T, MOD, n, m ;
int fac[50] , pw[50], fcnt ;
long long jc[50][MAXN] ;
int num[50][MAXN] ;

long long powMod(long long a,long long b,long long c){
    long long ret=1;
    while(b){
        if(b&1) ret=ret*a%c ;
        a=a*a%c ;
        b>>=1 ;
    }
    return ret;
}

void preDo(){
    for(int i=1;i<=fcnt;++i){
        jc[i][0]=1 ;
        for(int j=1;j<=T;++j){
            num[i][j]=num[i][j-1] ;
            int t=j ;
            while(t%fac[i]==0){
                t/=fac[i] ;
                num[i][j]++ ;
            }
            jc[i][j]=jc[i][j-1]*t%fac[i] ;
        }
    }
}

long long C(long long a, long long b, int t){
    int c=fac[t] ;
    if(num[t][a]-num[t][b]-num[t][a-b]>0) return 0 ;
    return jc[t][a]*powMod(jc[t][b],c-2,c)%c*powMod(jc[t][a-b],c-2,c)%c ;
}

long long C(long long a,long long b){
    long long ans=0 ;
    for(int i=1;i<=fcnt;++i){
        if(pw[i]!=1) cout << "WAAAA" ;
        long long tm=MOD/fac[i] ;
        ans += C(a,b,i)*tm%MOD*powMod(tm,fac[i]-2,fac[i])%MOD ;
        while(ans>=MOD) ans-=MOD ;
    }
    return ans ;
}

int main(){
    freopen("visit.in","r",stdin) ;
    freopen("visit.out","w",stdout) ;
    long long ans=0 ;
    cin >> T >> MOD >> n >> m ;
    int tmp=MOD ;
    for(int i=2;i<=tmp;++i){
        if(tmp%i==0){
            fac[++fcnt]=i ;
            while(tmp%i==0) tmp/=i, pw[fcnt]++ ;
        }
        if(i*i>tmp && i<tmp) i=tmp-1 ;
    }
    preDo() ;
    for(int rr=0;rr<=T;++rr){
        int ll=rr-n ;
        if(ll<0 || (T-ll-rr+m)&1)
            continue ;
        int uu = (T-ll-rr+m)/2 , dd = uu-m ;
        if(uu<0 || dd<0) continue ;
        ans += C(T,uu)*C(T-uu,dd)%MOD*C(T-uu-dd,ll)%MOD ;
        while(ans>=MOD) ans-=MOD ;
    }
    cout << ans << \n ;
    return 0 ;
}
View Code

 

第三题:

博弈论,前缀性质想到建Trie树,怎么在上面跑博弈论呢?

如果只有一轮我们就看他是必赢或必输就好了,但是有多盘,可以选择战略性这盘输或赢;

我们保存这个节点是否有选择赢或输的权利;

从叶子节点出发,只有选择输的权利;

从非叶子节点出发,只要有一个儿子没有选择输的权利,他就有选择输的权利;只要有一个儿子没有选择赢的权利,他就有选择赢的权利;

考虑根节点,如果他有选择赢和输的权利,它可以前面一直输,最后赢;如果他只有选择赢的权利,就看K的奇偶性;其他情况都是后手必胜

技术分享图片
#include<bits/stdc++.h>
using namespace std;
const int M = 1e6;
int ch[M][27], tot;
bool lose[M], win[M];


void insert(char *s){
    int len = strlen(s);
    int now = 0;
    for(int i = 0; i < len; i++){
        int t = s[i] - a;
        if(!ch[now][t]) ch[now][t] = ++tot;
        now = ch[now][t] ;
    }
}

void dfs(int u){
    int child = 0;
    for(int i = 0; i <= 25; i++)
        if(ch[u][i]){
            int son = ch[u][i];
            dfs(son);
            child++;
            if(!win[son]) win[u] = 1;
            if(!lose[son]) lose[u] = 1;
        }
    if(!child){
        lose[u] = 1;
    }
}

void init(){
    memset(win, 0, sizeof(win));
    memset(lose, 0, sizeof(lose));
    memset(ch, 0, sizeof(ch));
    tot = 0;
}

int main(){
    freopen("strGame.in","r",stdin);
    freopen("strGame.out","w",stdout);
    int T, n, k;
    char s[100005];
    scanf("%d", &T);
    while(T--){
        scanf("%d%d",&n,&k);
        init();
        for(int i=1;i<=n;i++){
            scanf("%s", s);
            insert(s);
        }
        dfs(0);
        if(win[0] && lose[0])puts("Pure");
        else if(win[0]) (k%2) ? puts("Pure") : puts("Dirty");
        else puts("Dirty");
    }
}
View Code

 

平时八测

标签:close   ret   col   def   从后往前   \n   gcd   pow   sizeof   

原文地址:https://www.cnblogs.com/EdSheeran/p/9742681.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!