码迷,mamicode.com
首页 > 其他好文 > 详细

SGU167

时间:2018-10-05 12:24:20      阅读:190      评论:0      收藏:0      [点我收藏+]

标签:pac   多少   max   额外   tchar   变量   input   使用   c++   

嗯以前在某个DP专题了发过这道题,但是当时没码代码,现在重发一篇题解

技术分享图片

思考阶段如何划分:
由已经处理的行数向下扩展,但是仅有行数我们无法描述状态空间
那我们再加入已经选过的格子数,这样我们似乎可以确定我们已经完成了多少行,哪些格子已经选过
但是这是凸连通块,我们靠以上两个信息还远远不够
那么我们想一想如何使阶段转移完成后最终得到的是凸连通块,再加入什么信息?
我们可以再加入每行的左端点和右端点,确定下一行端点的范围,以满足单调性
那么我们还可以再加入轮廓的单调类型
加起来5维
f[i,j,l,r,x,y]
表示前i行,选了j个格子,其中第i行选了第l到r的格子,左轮廓的单调性是x,右轮廓的单调性是r时,能构成的凸连通块的最大权值和
行数和格子数可以作为dp的“阶段”,每次转移到下一行,同时选出的格子递增,符合“阶段线性增长”的特点

然后我们会发现,我们在进行状态转移的时候,需要第i行中l到r的区间和,显然边转移边计算需要不低的复杂度,于是我们可以预处理出表示每一行的前缀和数组A,这样在计算时,l到r的区间和就可以表示为A[i][r]-A[i][l],在转移结束时,再定义两个变量p,q,表示当前行的左端点l和右端点r
然后我们来写一下状态转移方程试试:
根据我们的分析,我们可以得到4种可能状态://1表示递减,0表示递增
1.左边界列号递减,右边界列号递增(两边界都处于扩张状态)
f[i,j,l,r,1,0] = A[i][r]-A[i][l] + max{f[i-1,j-(r-l+1),p,q,1,0]};//j>r-l+1>0
`     = A[i][r]-A[i][l] + max{f[i-1,0,0,0,1,0]};//j=r-l+1>0
2.左右边界列号都递减(左边界扩张,右边界收缩)
f[i,j,l,r,1,1] = A[i][r]-A[i][l] + max{max{f[i-1,j-(r-l+1),p,q,1,y]}(0<=y<=1)}
3.左右边界列号都递减(左边界收缩,右边界扩张)
f[i,j,l,r,0,0] = A[i][r]-A[i][l] + max{{f[i-1,j-(r-l+1),p,q,x,0](0<=x<=1)}}
4.左边界列号递增,右边界列号递减(两边界都处于收缩状态)
f[i,j,l,r,0,1] = A[i][r]-A[i][l] + max{max{max{f[i-1,j-(r-l+1),p,q,x,y]}(0<=y<=1)}(0<=x<=1)}(p<=l<=r<=q)
对于2,3,4的max嵌套max,可能有点难以理解
我们来想一下,我们要进行收缩,那么我们这个收缩的状态是怎么得来的?
答:由上一行扩张或收缩而来
所以当收缩右边界时,我们先比较的是上一行右边界标记扩张和右边界标记收缩的最大值,再和当前行比较
左边界收缩时同理。
这样我们就能推出2和3。
进而我们想4这种情况。
左右边界同时进行收缩,我们就要嵌套3次,先由上述确定右边界状态,再由已确定右边界状态来确定左边界状态,最后由已确定的左边界状态和右边界状态来确定当前行
//此处状态单指标记为收缩或扩张,即上一行的左/右边界由上上一行的左/右边界扩张或收缩得到

本题还要求输出方案。
在动态规划需要给出方案时,通常做法是额外使用一些与DP状态大小相同的数组记录下来每个状态,通过递归返回最初的状态,然后逐层退出的同时输出方案

  1 #include<bits/stdc++.h>
  2 using namespace std;
  3 int f[20][230][20][20][2][2];
  4 int lcw[20][230][20][20][2][2];//What did you choose on the left 
  5 int rcw[20][230][20][20][2][2];//What did you choose on the right 
  6 int lud[20][230][20][20][2][2];//The left is up or down
  7 int rud[20][230][20][20][2][2];//The right is up or down
  8 int n, m, k;
  9 
 10 int ans = 0, ie, le, re, xe, ye;
 11 
 12 int i, j, l, r, il, ir, x, y;
 13 
 14 int a[20][20], b[20][20];
 15 
 16 inline int read() {
 17     int x = 0, y = 1;
 18     char ch = getchar();
 19     while(!isdigit(ch)) {
 20         if(ch == -) y = -1;
 21         ch = getchar();
 22     }
 23     while(isdigit(ch)) {
 24         x = (x << 1) + (x << 3) + ch - 0;
 25         ch = getchar();
 26     }
 27     return x * y;
 28 }
 29 
 30 inline void update(int val, int L, int R, int X, int Y) {
 31     if(val < f[i][j][l][r][x][y]) return;
 32     f[i][j][l][r][x][y] = val;
 33     lcw[i][j][l][r][x][y] = L, rcw[i][j][l][r][x][y] = R;
 34     lud[i][j][l][r][x][y] = X, rud[i][j][l][r][x][y] = Y;
 35 }
 36 
 37 void print(int i, int j, int l, int r, int x, int y) {
 38     if(!j) return;
 39     print(i - 1, j - (r - l + 1), lcw[i][j][l][r][x][y], rcw[i][j][l][r][x][y], lud[i][j][l][r][x][y], rud[i][j][l][r][x][y]);
 40     for(j = l; j <= r; ++j) printf("%d %d\n", i, j);
 41 } 
 42 
 43 int main() {
 44     freopen("input.in", "r", stdin);
 45     freopen("output.out", "w", stdout);
 46     memset(f, 0xcf, sizeof(f));
 47     n = read(), m = read(), k = read();
 48     for(i = 1; i <= n; ++i)
 49         for(int j = 1; j <= m; ++j) {
 50             a[i][j] = read();
 51             b[i][j] = b[i][j - 1] + a[i][j];
 52         }
 53     for(i = 1; i <= n; ++i)
 54         for(j = 1; j <= k; ++j) 
 55             for(l = 1; l <= m; ++l)
 56                 for(r = l; r <= m; ++r) {//后两个维度,0表示递增,1表示递减 
 57                     int len = r - l + 1, pow;
 58                     if(len > j) break;
 59                     pow = b[i][r] - b[i][l - 1];
 60                     for(x = 0; x < 2; ++x)
 61                         for(y = 0; y < 2; ++y) 
 62                             update(pow, m, 0, x, y);
 63                     x = y = 1;
 64                     for(int p = l; p <= r; ++p)
 65                         for(int q = p; q <= r; ++q)
 66                             update(f[i - 1][j - len][p][q][1][1] + pow, p, q, 1, 1);
 67                     x = y = 0;
 68                     for(int p = 1; p <= l; ++p)
 69                         for(int q = r; q <= m; ++q) {
 70                             update(f[i - 1][j - len][p][q][0][0] + pow, p, q, 0, 0);
 71                             update(f[i - 1][j - len][p][q][0][1] + pow, p, q, 0, 1);
 72                             update(f[i - 1][j - len][p][q][1][0] + pow, p, q, 1, 0);
 73                             update(f[i - 1][j - len][p][q][1][1] + pow, p, q, 1, 1);
 74                         } 
 75                     x = 1, y = 0;
 76                     for(int p = l; p <= r; ++p)
 77                         for(int q = r; q <= m; ++q) {
 78                             update(f[i - 1][j - len][p][q][1][0] + pow, p, q, 1, 0);
 79                             update(f[i - 1][j - len][p][q][1][1] + pow, p, q, 1, 1);
 80                         }
 81                     x = 0, y = 1;
 82                     for(int p = 1; p <= l; ++p)
 83                         for(int q = l; q <= r; ++q) {
 84                             update(f[i - 1][j - len][p][q][0][1] + pow, p, q, 0, 1);
 85                             update(f[i - 1][j - len][p][q][1][1] + pow, p, q, 1, 1);
 86                         }
 87                 } 
 88     for(i = 1; i <= n; ++i)
 89         for(l = 1; l <= m; ++l)
 90             for(r = l; r <= m; ++r)
 91                 for(x = 0; x < 2; ++x)
 92                     for(y = 0; y < 2; ++y) {
 93                         if(ans < f[i][k][l][r][x][y]) {
 94                             ans = f[i][k][l][r][x][y];
 95                             ie = i, le = l, re = r, 
 96                             xe = x, ye = y;
 97                         }
 98                     }
 99     printf("Oil : %d\n", ans);
100     print(ie, k, le, re, xe, ye);
101     return 0;
102 }

 

SGU167

标签:pac   多少   max   额外   tchar   变量   input   使用   c++   

原文地址:https://www.cnblogs.com/ywjblog/p/9744362.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!