码迷,mamicode.com
首页 > 其他好文 > 详细

KMP求最小循环节讲解

时间:2018-10-05 12:25:18      阅读:225      评论:0      收藏:0      [点我收藏+]

标签:char   src   说明   archive   添加   har   情况下   表达   字母   

KMP最小循环节、循环周期:

定理:假设S的长度为len,则S存在最小循环节,循环节的长度L为len-next[len],子串为S[0…len-next[len]-1]。

(1)如果len可以被len - next[len]整除,则表明字符串S可以完全由循环节循环组成,循环周期T=len/L。

(2)如果不能,说明还需要再添加几个字母才能补全。需要补的个数是循环个数L-len%L=L-(len-L)%L=L-next[len]%L,L=len-next[len]。

 

 

理解该定理,首先要理解next数组的含义:next[i]表示前面长度为i的子串中,前缀和后缀相等的最大长度。

如:abcdabc

index

0

1

2

3

4

5

6

7

char

a

b

c

d

a

b

C

 

next

-1

0

0

0

0

1

2

3

 

如对于a,ab,abc,abcd,很明显,前缀和后缀相同的长度为0

  对于长度为5的子串abcda,前缀的a和后缀的a相同,长度为1

  对于长度为6的子串abcdab,前缀的ab和后缀的ab相同,长度为2

接下来举几个例子来说明最小循环节和循环周期:

为方便说明,先设字符串的长度为len,循环子串的长度为L

1.

s0s1s2s3s4s5 ,next[6]=3

即s0s1s2=s3s4s5

很明显可知:循环子串为s0s1s2,L=len-next[6]=3,且能被len整除。

 

2.

s0s1s2s3s4s5s6s7 ,next[8]=6

此时len-next[8]=2 ,即L=2

由s0s1s2s3s4s5=s2s3s4s5s6s7

可知s0s1=s2s3,s2s3=s4s5,s4s5=s6s7

显然s0s1为循环子串

 

3.

s0s1s2s3s4s5s6 ,next[7]=4

此时len-next[7]=3,即L=3

由s0s1s2s3=s3s4s5s6

可知s0s1=s3s4,s2s3=s5s6

从而可知s0s1s2=s3s4s5,s0=s3=s6

即如果再添加3-4%3=2个字母(s1s2),那么得到的字符串就可以由s0s1s2循环3次组成

 

这个定理可以这么理解:

http://www.cnblogs.com/oyking/p/3536817.html

对于一个字符串,如abcd abcd abcd,由长度为4的字符串abcd重复3次得到,那么必然有原字符串的前八位等于后八位。

也就是说,对于某个字符串S,长度为len,由长度为L的字符串s重复R次得到,当R≥2时必然有S[0..len-L-1]=S[L..len-1],字符串下标从0开始

那么对于KMP算法来说,就有next[len]=len-L。此时L肯定已经是最小的了(因为next的值是前缀和后缀相等的最大长度,即len-L是最大的,那么在len已经确定的情况下,L是最小的)。

 

如果一定仔细证明的话,请看下面:

(参考来自:http://www.cnblogs.com/wuyiqi/archive/2012/01/06/2314078.html,有所改动)

技术分享图片

 k    m   x     j     i

由上,next【i】=j,两段红色的字符串相等(两个字符串完全相等),s[k....j]==s[m....i]

设s[x...j]=s[j....i](xj=ji)

则可得,以下简写字符串表达方式

kj=kx+xj;

mi=mj+ji;

因为xj=ji,所以kx=mj,如下图所示

技术分享图片

 k   m     a    x    j     i

设s[a…x]=s[x..j](ax=xj)

又由xj=ji,可知ax=xj=ji

即s[a…i]是由s[a…x]循环3次得来的。

而且看到没,此时又重复上述的模型,s[k…x]=s[m…j],可以一直递推下去

最后可以就可以递推出文章开头所说的定理了。

 

最后再举两个相关例子

abdabdab  len:8 next[8]:5

最小循环节长度:3(即abd)   需要补的个数是1  d

ababa  len:5 next[5]:3

最小循环节长度:2(即ab)    需要补的个数是1  b

--------------------- 本文来自 hao_zong_yin 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/hao_zong_yin/article/details/77455285?utm_source=copy

KMP求最小循环节讲解

标签:char   src   说明   archive   添加   har   情况下   表达   字母   

原文地址:https://www.cnblogs.com/Kissheart/p/9744345.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!