码迷,mamicode.com
首页 > 其他好文 > 详细

HDU6315 Naive Operations(线段树 复杂度分析)

时间:2018-10-07 17:15:53      阅读:149      评论:0      收藏:0      [点我收藏+]

标签:排列   struct   需要   inline   维护   cpp   log   最小   pre   

题意

题目链接

Sol

这题关键是注意到题目中的\(b\)是个排列

那么最终的答案最多是\(nlogn\)(调和级数)

\(d_i\)表示\(i\)号节点还需要加\(d_i\)次才能产生\(1\)的贡献

用线段树维护每个节点里\(d_i\)的最小值,每次当\(d_i - 1= 0\)的时候往下递归即可

时间复杂度:\(O(nlog^2 n)\)

多组数据记得清空lazy标记啊qwq。。。。

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1e6;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-')f =- 1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, M, b[MAXN];
#define ls k << 1
#define rs k << 1 | 1
struct Node {
    int l, r, mn, sum, f;
}T[MAXN];
void update(int k) {
    T[k].mn = min(T[ls].mn, T[rs].mn);
    T[k].sum = T[ls].sum + T[rs].sum;
}
void add(int k, int val) {
    T[k].mn -= val; T[k].f += val;
}
void pushdown(int k) {
    if(!T[k].f) return ;
    add(ls, T[k].f); add(rs, T[k].f);
    T[k].f = 0;
}
void Build(int k, int ll, int rr) {
    T[k].l = ll; T[k].r = rr; T[k].sum = 0; T[k].f = 0;
    if(ll == rr) {T[k].mn = b[ll]; return ;}
    int mid = ll + rr >> 1;
    Build(ls, ll, mid); Build(rs, mid + 1, rr);
    update(k); 
}
void dec(int k) {
    if(T[k].mn == 0) {
        if(T[k].l == T[k].r) T[k].sum++, T[k].mn = b[T[k].l];
        else pushdown(k), dec(ls), dec(rs), update(k);
    }
}
void IntervalAdd(int k, int ll, int rr) {
    if(ll <= T[k].l && T[k].r <= rr) {
        add(k, 1);
        if(T[k].mn == 0) dec(k);
        return ;
    }
    pushdown(k);
    int mid = T[k].l + T[k].r >> 1;
    if(ll <= mid) IntervalAdd(ls, ll, rr);
    if(rr  > mid) IntervalAdd(rs, ll, rr);
    update(k);
}
int Query(int k, int ll, int rr) {
    if(ll <= T[k].l && T[k].r <= rr) return T[k].sum;
    pushdown(k);
    int mid = T[k].l + T[k].r >> 1;
    if(rr <= mid) return Query(ls, ll, rr);
    else if(ll > mid) return Query(rs, ll, rr);
    else return Query(ls, ll, rr) + Query(rs, ll, rr);
}
main() {
    while(scanf("%d %d", &N, &M) == 2) {
        for(int i = 1; i <= N; i++) b[i] = read();
        Build(1, 1, N);
        while(M--) {
            char s[6]; int l, r;
            scanf("%s", s + 1); l = read(), r = read(); 
            if(s[1] == 'a') IntervalAdd(1, l, r);
            else printf("%d\n", Query(1, l, r));            
        }
    }
}

HDU6315 Naive Operations(线段树 复杂度分析)

标签:排列   struct   需要   inline   维护   cpp   log   最小   pre   

原文地址:https://www.cnblogs.com/zwfymqz/p/9750539.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!