码迷,mamicode.com
首页 > 其他好文 > 详细

Problem 1

时间:2018-10-10 17:15:31      阅读:222      评论:0      收藏:0      [点我收藏+]

标签:size   its   def   amp   $1   fine   访问   bool   empty   

$des$

小G有一个长度为 $n$ 的 01 串 T ,其中只有 $T_S = 1$,其余位置都是 $0$。现在小G可以进行若干
次以下操作:
选择一个长度为 $K$ 的连续子串(K是给定的常数),翻转这个子串。
对于每个 $i,i ∈ [1,n]$,小G想知道最少要进行多少次操作使得 $T_i = 1$. 特别的,有 $m$ 个 “禁
止位置”,你需要保证在操作过程中 $1$ 始终不在任何一个禁止位置上。

 

$sol$

考虑当前在每个点时可以通过一次翻转转移到哪些点,直接遂遆道即可算出每个点的所需步
数。然而边数会达到 $O(n ^ 2)$ 级别。
可以发现转移到的点一定是一段区间内的奇数或者偶数点,于是一种简单的优化
方法是在 BFS 时开两个 SET 维护当前有哪些奇数点和偶数点还未被 BFS 到,转移时直接
在 SET 上 lower_bound,就不会访问已经 BFS 到过的点了。$O(nlogn)$  

 

$code$

#include <bits/stdc++.h>

#define Rep(i, j, k) for (int i = j; i <= k; i++)

using namespace std;

const int N = 1e5 + 10;

int n, K, m, S;
int dis[N];
bool ban[N];
set<int> add1, even2;

void BFS() {
    memset(dis, -1, sizeof dis);
    queue<int> q;
    dis[S] = 0, q.push(S);
    while (!q.empty()) {
        int o = q.front(); q.pop();
        int L = max(1, o - K + 1), R = min(n, o + K - 1);
        L = L + (L + K - 1) - o, R = R + (R - K + 1) - o;
//        cout << o << " " << L << " " << R << "\n"; 
        set<int> &p = L & 1 ? add1 : even2;
        for (set<int> :: iterator i = p.lower_bound(L); i != p.end() && *i <= R; p.erase(i++))
            dis[*i] = dis[o] + 1, q.push(*i);
    }
}

int main() {
    scanf("%d%d%d%d", &n, &K, &m, &S);
    Rep(i, 1, m) {
        int x;
        scanf("%d", &x);
        ban[x] = true;
    }
    Rep(i, 1, n) if (!ban[i] && i != S) i & 1 ? add1.insert(i) : even2.insert(i);
    BFS();
    Rep(i, 1, n) printf("%d ", dis[i]);
    return 0;
}

 

Problem 1

标签:size   its   def   amp   $1   fine   访问   bool   empty   

原文地址:https://www.cnblogs.com/shandongs1/p/9767164.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!