码迷,mamicode.com
首页 > 其他好文 > 详细

2018.10.10考试

时间:2018-10-10 21:59:39      阅读:227      评论:0      收藏:0      [点我收藏+]

标签:lse   ble   出现   10.10   tail   inline   ios   数据   set   

一次凉凉的考试

T110078. 「一本通 3.2 练习 4」新年好

题目描述

原题来自:CQOI 2005

重庆城里有 \(n\) 个车站,\(m\) 条双向公路连接其中的某些车站。每两个车站最多用一条公路连接,从任何一个车站出发都可以经过一条或者多条公路到达其他车站,但不同的路径需要花费的时间可能不同。在一条路径上花费的时间等于路径上所有公路需要的时间之和。

佳佳的家在车站 \(1\),他有五个亲戚,分别住在车站 \(a\),\(b\),\(c\),\(d\),\(e\)。过年了,他需要从自己的家出发,拜访每个亲戚(顺序任意),给他们送去节日的祝福。怎样走,才需要最少的时间?

输入格式

第一行:\(n\),\(m\) 为车站数目和公路的数目。

第二行:\(a\),\(b\),\(c\),\(d\),\(e\) 为五个亲戚所在车站编号。

以下 \(m\) 行,每行三个整数 \(x\),\(y\),\(t\),为公路连接的两个车站编号和时间。

输出格式

输出仅一行,包含一个整数 \(T\),为最少的总时间。

样例

样例输入

6 6
2 3 4 5 6
1 2 8
2 3 3
3 4 4
4 5 5
5 6 2
1 6 7

样例输出

21

数据范围与提示

对于全部数据,\(1≤n≤50000\),\(1≤m≤10^5\),\(1<a,b,c,d,e≤n\),\(1≤x,y≤n\),\(1≤t≤100\)

正解没想出来,就写了\(n^3\)暴力,然后手贱把i打成1,暴力变爆零(改后交了一便,\(n^3\)竟然能过1000,loj 太强了)
正解是求点1和五个亲戚的点到所有点的最短路,然后dfs求怎样排序最优

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define inf 0x7ffffff
using namespace std;
const int N=50005;
struct node
{
    int to,nxt,w;
}e[N<<2];
int head[N],tot=0,a[10];
int dt[50];
int dis[7][N],vis[N],vis2[N];
int n,m,ans=inf;
void add(int x,int y,int z)
{
    e[++tot]=(node){y,head[x],z};
    head[x]=tot;
}
void spfa(int s,int k)
{
    queue<int>q;
    memset(vis2,0,sizeof(vis2));
    q.push(s);
    vis2[s]=1;
    dis[k][s]=0;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        vis2[u]=0;
        for(int i=head[u];i;i=e[i].nxt)
        {
            int v=e[i].to;
            if(dis[k][v]>dis[k][u]+e[i].w)
            {
                dis[k][v]=dis[k][u]+e[i].w;
                if(!vis2[v])
                {
                    vis2[v]=1;
                    q.push(v);
                }
            }
        }
    }
}
void dfs(int k)
{
    if(k==6)
    {
        int s=0;
        for(int i=1;i<6;i++)
            s+=dis[dt[i]][a[dt[i+1]]];
        ans=min(ans,s);
        return;
    }
    for(int i=2;i<=6;i++)
    {
        if(!vis[i])
        {
            vis[i]=1;
            dt[k+1]=i;
            dfs(k+1);
            vis[i]=0;
        }
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=2;i<=6;i++)
        scanf("%d",&a[i]);
    for(int i=1;i<=m;i++)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
        add(b,a,c);
    }
    memset(dis,0x3f,sizeof(dis));
    a[1]=1;
    dt[1]=1;
    for(int i=1;i<=6;i++) spfa(a[i],i);
    dfs(1);
    printf("%d",ans);
    return 0;
}

T210178. 「一本通 5.5 例 4」旅行问题

题目描述

原题来自:POI 2004

John 打算驾驶一辆汽车周游一个环形公路。公路上总共有 n 车站,每站都有若干升汽油(有的站可能油量为零),每升油可以让汽车行驶一千米。John 必须从某个车站出发,一直按顺时针(或逆时针)方向走遍所有的车站,并回到起点。在一开始的时候,汽车内油量为零,John 每到一个车站就把该站所有的油都带上(起点站亦是如此),行驶过程中不能出现没有油的情况。

任务:判断以每个车站为起点能否按条件成功周游一周。

输入格式

第一行是一个整数 \(n\),表示环形公路上的车站数;

接下来 \(n\) 行,每行两个整数 \(p_i\),\(d_i\),分别表示表示第 \(i\) 号车站的存油量和第 \(i\) 号车站到下一站的距离。

输出格式

输出共 \(n\) 行,如果从第 \(i\) 号车站出发,一直按顺时针(或逆时针)方向行驶,能够成功周游一圈,则在第 \(i\) 行输出 TAK,否则输出 NIE。

样例

样例输入

5
3 1
1 2
5 2
0 1
5 4

样例输出

TAK
NIE
TAK
NIE
TAK

数据范围与提示

对于全部数据 \(3≤n≤10^6\),\(0≤p_i≤2×10^9\),\(0<d_i≤2×10^9\).

这个题开始看。。。不会,写暴力,\(n^2\),不知道考试为啥脑残的把\(d_i\)认为是点i到i-1和i+1,的距离,继续凉凉,不知道为啥还有10分
正解单调队列

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int N=2e6+1;
int n,a[N],head,tail,pq[N],last;
long long q[N],p[N],qz[N];
bool ans[N];
void work1()
{
    for(int i=1;i<=2*n-1;i++)
        qz[i]=qz[i-1]+a[i];
    head=1;tail=0;
    for(int i=1;i<=2*n-1;i++)
    {
        while(head<=tail&&q[tail]>=qz[i]) tail--;
        q[++tail]=qz[i];
        p[tail]=i;
        while(head<=tail&&i-p[head]>=n) head++;
        if(i>=n) 
        {
            if(q[head]>=qz[i-n])
            ans[i-n+1]=1;
        }
    }
    return ;
}
void work2()
{
    qz[1]=pq[1];
    for(int i=2;i<=n+1;i++)
        qz[i]=qz[i-1]+pq[n-i+2];
    for(int i=n+2;i<=n*2-1;i++)
        qz[i]=qz[i-1]+pq[n*2-i+2];
    head=1;tail=0;
    for(int i=1;i<=2*n-1;i++)
    {
        while(head<=tail&&q[tail]>=qz[i]) tail--;
        q[++tail]=qz[i];
        p[tail]=i;
        while(head<=tail&&i-p[head]>=n) head++;
        if(i>=n) 
        {
            if(q[head]>=qz[i-n])
            {
                if(i==n) ans[1]=1;
                else ans[2*n-i+1]=1;
            }
        }
    }
    return ;
}
int main()
{
        
    scanf("%d",&n);
    for(int i=1,u,v;i<=n;i++)
    {
        scanf("%d%d",&u,&v);
        a[i+n]=a[i]=u-v;    
        pq[i+n]=pq[i]=u-last;
        last=v;
    }
    pq[1]-=last;
    pq[1+n]=pq[1];
    work1();
    work2();
    for(int i=1;i<=n;i++)
    {
        if(ans[i])puts("TAK");
        else puts("NIE");
    }
    return 0;
}

T310220. 「一本通 6.5 例 2」Fibonacci 第 n 项

题目描述

大家都知道 Fibonacci 数列吧,\(f_1=1\),\(f_2=1\),\(f_3=2\),\(f_4=3\),??,\(f_n=f_{n?1}+f_{n?2}\)
现在问题很简单,输入 \(n\)\(m\),求 \(fn?mod?m\)

输入格式

输入 \(n\),\(m\)

输出格式

输出 \(f_n?mod?m\)

样例

样例输入

5 1000

样例输出

5

数据范围与提示

对于 100%100%100% 的数据, \(1≤n≤2×10^9\),\(1≤m≤10^9+10\)

唯一没有出错的题.....
矩阵快速幂板子

#include<iostream>
#include<cstdio>
#include<cstring>
#define int long long
using namespace std;
int mod;
struct node
{
    int a[2][2];
}ss,ans;
node mul(node &a,node &b)
{
    node c;
    for(int i=0;i<2;++i)
        for(int j=0;j<2;++j)
        {
            c.a[i][j]=0;
            for(int k=0;k<2;++k)
                c.a[i][j]=(c.a[i][j]+(a.a[i][k]*b.a[k][j])%mod)%mod;
        }
    return c;
}
void fpow(int b)
{
    while(b)
    {
        if(b&1)ans=mul(ans,ss);
        ss=mul(ss,ss);
        b>>=1;
    }
}
signed main()
{
    int n;
    scanf("%lld%lld",&n,&mod);
    ans.a[0][0]=ans.a[1][0]=1;
    ans.a[0][1]=ans.a[1][1]=0;
    ss.a[0][0]=ss.a[1][0]=ss.a[0][1]=1;
    ss.a[1][1]=0;
    fpow(n-1);
    printf("%lld",ans.a[0][0]);
    return 0;
}

2018.10.10考试

标签:lse   ble   出现   10.10   tail   inline   ios   数据   set   

原文地址:https://www.cnblogs.com/axma/p/9768746.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!