码迷,mamicode.com
首页 > 其他好文 > 详细

FFT模板

时间:2018-10-10 23:42:47      阅读:221      评论:0      收藏:0      [点我收藏+]

标签:double   +=   include   nbsp   algorithm   span   printf   using   void   

kuangbin模板

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
using namespace std;
 
const double PI = acos(-1.0);
//复数结构体
struct complex
{
    double r,i;
    complex(double _r = 0.0,double _i = 0.0)
    {
        r = _r; i = _i;
    }
    complex operator +(const complex &b)
    {
        return complex(r+b.r,i+b.i);
    }
    complex operator -(const complex &b)
    {
        return complex(r-b.r,i-b.i);
    }
    complex operator *(const complex &b)
    {
        return complex(r*b.r-i*b.i,r*b.i+i*b.r);
    }
};
/*
 * 进行FFT和IFFT前的反转变换。
 * 位置i和 (i二进制反转后位置)互换
 * len必须去2的幂
 */
void change(complex y[],int len)
{
    int i,j,k;
    for(i = 1, j = len/2;i < len-1; i++)
    {
        if(i < j)swap(y[i],y[j]);
        //交换互为小标反转的元素,i<j保证交换一次
        //i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
        k = len/2;
        while( j >= k)
        {
            j -= k;
            k /= 2;
        }
        if(j < k) j += k;
    }
}
/*
 * 做FFT
 * len必须为2^k形式,
 * on==1时是DFT,on==-1时是IDFT
 */
void fft(complex y[],int len,int on)
{
    change(y,len);
    for(int h = 2; h <= len; h <<= 1)
    {
        complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
        for(int j = 0;j < len;j+=h)
        {
            complex w(1,0);
            for(int k = j;k < j+h/2;k++)
            {
                complex u = y[k];
                complex t = w*y[k+h/2];
                y[k] = u+t;
                y[k+h/2] = u-t;
                w = w*wn;
            }
        }
    }
    if(on == -1)
        for(int i = 0;i < len;i++)
            y[i].r /= len;
}
const int MAXN = 200010;
complex x1[MAXN],x2[MAXN];
char str1[MAXN/2],str2[MAXN/2];
int sum[MAXN];
int main()
{
    while(scanf("%s%s",str1,str2)==2)
    {
        int len1 = strlen(str1);
        int len2 = strlen(str2);
        int len = 1;
        while(len < len1*2 || len < len2*2)len<<=1;
        for(int i = 0;i < len1;i++)
            x1[i] = complex(str1[len1-1-i]-0,0);
        for(int i = len1;i < len;i++)
            x1[i] = complex(0,0);
        for(int i = 0;i < len2;i++)
            x2[i] = complex(str2[len2-1-i]-0,0);
        for(int i = len2;i < len;i++)
            x2[i] = complex(0,0);
        //求DFT
        fft(x1,len,1);
        fft(x2,len,1);
        for(int i = 0;i < len;i++)
            x1[i] = x1[i]*x2[i];
        fft(x1,len,-1);
        for(int i = 0;i < len;i++)
            sum[i] = (int)(x1[i].r+0.5);
        for(int i = 0;i < len;i++)
        {
            sum[i+1]+=sum[i]/10;
            sum[i]%=10;
        }
        len = len1+len2-1;
        while(sum[len] <= 0 && len > 0)len--;
        for(int i = len;i >= 0;i--)
            printf("%c",sum[i]+0);
        printf("\n");
    }
    return 0;
}

 

FFT模板

标签:double   +=   include   nbsp   algorithm   span   printf   using   void   

原文地址:https://www.cnblogs.com/ccsu-zry/p/9769498.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!