码迷,mamicode.com
首页 > 其他好文 > 详细

[POI2011]SEJ-Strongbox

时间:2018-10-12 13:43:14      阅读:129      评论:0      收藏:0      [点我收藏+]

标签:scanf   另一个   .net   color   排序   long   main   ons   必须   

题目大意:

一个有密码箱,数字是0~n-1,其中有若干个密码,密码的特点:若x是密码,y是密码,(x可以等于y)则(x+y)%n也是密码。

给一个n(<=10^14),一个k(k<=min(250000,n)),给k个数(a[k]<n),前k-1个数不是密码,第k个数是密码。

求在0~n-1中,最多有多少个数字是密码?

 

题解:

推荐(但是结论二的证明不太完整)

看起来和数论有一些关系。
而且一定是一个性质题。

结论1:若x是密码,则gcd(n,x)是密码

发现,x是密码,则k*x%n都是密码。

所以,一定存在一个t,c,使得t*x-n*c=gcd(n,x)

并且根据裴属定理,不能用x凑出一个更小的密码比gcd(n,x)更小,

 

结论2:若x,y是密码,则gcd(x,y)是密码。

根据裴属定理,p*x+q*y=gcd(x,y)有整数解。

如果q是负数q=-q,那么就是p*x+(c*n-q)*y=gcd(x,y)+c*n*y

那么,就存在非负数p,q使得p*x+q*y=gcd(x,y) mod n

 

结论3:若x是所有密码中最小的那一个,那么,所有的密码就是x,2x,3x,...kx,并且x是n的约数。

反证。设x是最小的,y是另一个密码,若x不是y的约数,那么gcd(x,y)<x,根据结论二,那么gcd(x,y)就是一个更小的密码。矛盾。

所以,任意的y都是x的倍数。

由于对于一个密码z,根据结论1,gcd(n,z)也是密码,所以,最小的密码x是gcd(n,z)的约数,也就是n的约数。

 

所以,如果我们求出了满足条件的x,那么n/x就是答案。

我们密码数量最多,所以,x必须取最小的。

 

由于给了一个a[k]是密码,而x又是n的约数,所以x就一定是gcd(a[k],n)的约数。

并且,x不能是a[1~k-1]的约数,只要是,那么x就能凑出ai,与ai不是密码矛盾。

只要不存在这样的ai,那么x一定可以是最小的密码(裴属定理可以证明)。

 

所以,我们可以枚举gcd(a[k],n)的约数,然后排序。

从小到大枚举x,再暴力验证是否是a[i]的约数,第一个符合的x,n/x就是答案。

 

代码:

 

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=250000+5;
ll n,k;
ll gcd(ll a,ll b){
    return b?gcd(b,a%b):a;
}
ll a[N],fac[N];
int tot;
int main(){
    scanf("%lld%lld",&n,&k);
    for(int i=1;i<=k;i++)scanf("%lld",&a[i]);
    ll g=gcd(a[k],n);
    //cout<<"gg "<<g<<endl;
    for(ll i=1;i*i<=g;i++){
        if(g%i==0){
            fac[++tot]=i;
            if(i!=g/i) fac[++tot]=g/i;
        }
    }sort(fac+1,fac+tot+1);
    for(int i=1;i<=tot;i++){
        //cout<<fac[i]<<" ";
        bool fl=true;
        for(int j=1;j<=k-1;j++){
            if(a[j]%fac[i]==0){
                fl=false;break;
            }
        }
        if(fl){
            printf("%lld",n/fac[i]);return 0;
        }
    }
    //cout<<" over "<<endl;
    return 0;
}

 

[POI2011]SEJ-Strongbox

标签:scanf   另一个   .net   color   排序   long   main   ons   必须   

原文地址:https://www.cnblogs.com/Miracevin/p/9777115.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!